Coupling to metal nanoparticles can increase the fluorescence intensity and photostability of fluorescent probes, and this plasmon-enhanced fluorescence is particularly promising for the dimmer fluorescent proteins common in biological imaging. Here, we measure the intensity distribution of single Cy3.5 dye molecules and mCherry fluorescent proteins one at a time as they adsorb on a conformal surface 4.8−61.0 nm thick over a gold nanorod (NR). The emission intensities for both types of fluorophores depend nonmonotonically on the spacer thickness, and an optimal spacer thickness of ∼10 nm is observed for both fluorophores using two different spacer layer materials. Emission from fluorophores coupled to metal nanoparticles is affected by two competing processes: an enhanced spontaneous decay rate and quenching via nonradiative antenna modes. After averaging over a conformal surface, the product of the simulated enhanced local electric field intensity and the quantum efficiency modification reproduces the experimental 10 nm ideal spacer thickness. Overall, up to a 3.4-fold average enhancement in fluorescence intensity was achieved despite the simple geometry, based on biocompatible, tunable, and economic colloidal gold NRs. This study of the distance dependence of single-molecule plasmon-enhanced fluorescence shows promise for super-resolving cellular membrane proteins naturally positioned above an extracellular substrate.
Single-molecule super-resolution imaging and tracking can measure molecular motions inside living cells on the scale of the molecules themselves. Diffusion in biological systems commonly exhibits multiple modes of motion, which can be effectively quantified by fitting the cumulative probability distribution of the squared step sizes in a two-step fitting process. Here we combine this two-step fit into a single least-squares minimization; this new method vastly reduces the total number of fitting parameters and increases the precision with which diffusion may be measured. We demonstrate this Global Fit approach on a simulated two-component system as well as on a mixture of diffusing 80 nm and 200 nm gold spheres to show improvements in fitting robustness and localization precision compared to the traditional Local Fit algorithm.
By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of singlemolecule experiments to the regime of fast confined diffusion without requiring advanced microscopy techniques.
Single-molecule fluorescence permits super-resolution imaging, but traditional algorithms for localizing these isolated fluorescent emitters assume stationary point light sources. Proposed here are two fitting functions that achieve similar nanometer-scale localization precision as the traditional symmetric Gaussian function, while allowing, and explicitly accounting for, directed motion. The precision of these methods is investigated through Fisher information analysis, simulation and experiments, and the new fitting functions are then used to measure, for the first time, the instantaneous velocity and direction of motion of live bacteria cells. These new methods increase the information content of single-molecule images of fast-moving molecules without sacrificing localization precision, thus permitting slower imaging speeds, and our new fitting functions promise to improve tracking algorithms by calculating velocity and direction during each image acquisition.
The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.