The Far Ultraviolet Spectroscopic Explorer satellite observes light in the far-ultraviolet spectral region, 905 -1187 Å with high spectral resolution. The instrument consists of four coaligned prime-focus telescopes and Rowland spectrographs with microchannel plate detectors. Two of the telescope channels use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 Å and the other two use SiC coatings for optimized throughput between 905 and 1105 Å. The gratings are holographically ruled to largely correct for astigmatism and to minimize scattered light. The microchannel plate detectors have KBr photocathodes and use photon counting to achieve good quantum efficiency with low background signal. The sensitivity is sufficient to examine reddened lines of sight within the Milky Way as well as active galactic nuclei and QSOs for absorption line studies of both Milky Way and extra-galactic gas clouds. This spectral region contains a number of key scientific diagnostics, including O VI, H I, D I and the strong electronic transitions of H 2 and HD.
The launch of the Far Ultraviolet Spectroscopic Explorer (FUSE) has been followed by an extensive period of calibration and characterization as part of the preparation for normal satellite operations. Major tasks carried out during this period include the initial coalignment, focusing, and characterization of the four instrument channels and a preliminary measurement of the resolution and throughput performance of the instrument. We describe the results from this test program and present preliminary estimates of the on-orbit performance of the FUSE satellite based on a combination of these data and prelaunch laboratory measurements.
High-resolution (∼ 0.22 Å) spectra of the north jovian aurora were obtained in the 905-1180 Å window with the Far Ultraviolet Spectroscopic Explorer (FUSE) on October 28, 2000. The FUSE instrument resolves the rotational structure of the H 2 spectra and the spectral range allows the study of self-absorption. Below 1100 Å, transitions connecting to the v 2 levels of the H 2 ground state are partially or totally absorbed by the overlying H 2 molecules. The FUSE spectra provide information on the overlying H 2 column and on the vibrational distribution of H 2 . Transitions from high-energy H 2 Rydberg states and treatment of self-absorption are considered in our synthetic spectral generator. We show comparisons between synthetic and observed spectra in the 920-970, 1030-1080, and 1090-1180 Å spectral windows. In a first approach (single-layer model ), the synthetic spectra are generated in a thin emitting layer and the emerging photons are absorbed by a layer located above the source. It is found that the parameters of the single-layer model best fitting the three spectral windows are 850, 800, and 800 K respectively for the H 2 gas temperature and 1.3 × 10 18 , 1.5 × 10 20 , and 1.3 × 10 20 cm −2 for the H 2 self-absorbing vertical column respectively. Comparison between the H 2 column and a 1-D atmospheric model indicates that the short-wavelength FUV auroral emission originates from just above the homopause. This is confirmed by the high H 2 rovibrational temperatures, close to those deduced from spectral analyses of H + 3 auroral emission. In a second approach, the synthetic spectral generator is coupled with a vertically distributed energy degradation model, where the only input is the energy distribution of incoming electrons (multi-layer model ). The model that best fits globally the three FUSE spectra is a sum of Maxwellian functions, with characteristic energies ranging from 1 to 100 keV, giving rise to an emission peak located at 5 µbar, that is ∼ 100 km below the methane homopause. This multi-layer model is also applied to a re-analysis of the Hopkins Ultraviolet Telescope (HUT) auroral spectrum and accounts for the H 2 self-absorption as well as the methane absorption. It is found that no additional discrete soft electron precipitation is necessary to fit either the FUSE or the HUT observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.