We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm −1 at 10 Hz, to 5.33 versus 2.88 mS cm −1 at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and −7% at 10 Hz and 1 MHz after ablation (0.23−0.29 at 10 Hz, and 0.43−0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09−0.32 at 10 Hz and 0.37−0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.
The choice of microvascular perfusion algorithm has significant effects on final ablation zone dimensions in FEM models of RF ablation. The authors also found that both interpatient variation in base line tissue perfusion and the reduction in perfusion due to cirrhosis have considerable effect on ablation zone dimensions.
Our computer modelling results show only minor increases in thermal lesion dimensions with electrode materials of higher thermal conductivity. These observed differences likely do not provide a significant advantage during clinical procedures.
Three methods of creating large thermal lesions with cool-tip cluster electrodes were compared. Three cluster electrodes were arranged 4 cm apart in a triangular array. Eight lesions were created ex vivo in fresh bovine liver (from a butcher) with each method: sequential ablation (three electrodes, 12 minutes each); simultaneous activation of electrodes (12 minutes); and rapid switching of power between electrodes (12 minutes), for which an electronic computer-controlled switch was developed. For sequential, rapid switching, and simultaneous methods, lesion volumes were 137.5 cm(3)+/- 22.2, 116.4 cm(3)+/- 15.2, and 22.3 cm(3)+/- 6.4 (P < .05), respectively, and final temperatures at lesion center were 80 degrees C +/- 5, 97 degrees C +/- 8, and 41 degrees C +/- 3 (P < .001), respectively. Because of electrical interference between electrodes, simultaneous method led to little heating at the center between the electrodes and created small discontinuous lesions. Rapid switching created large round lesions by employing multiple electrodes concurrently, which substantially reduced treatment time and resulted in more effective heating between electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.