Environmental variables, such as temperature, are important in determining the efficiency of biological control in ornamental crops. This paper examines the effect of temperature on the functional response of adult female Phytoseiulus persimilis to eggs of the spider mite, Tetranychus urticae. The functional response was determined using a new functional response assay technique with plant stems as an arena, rather than leaf discs. The use of plant stems allows the influence that plant structure has on predation to be incorporated into the assay. Control assays were also used (without predators) to estimate natural losses of prey. The data were analysed using a binomial model, with the use of Abbot's formula to correct for the losses in the controls. A combined equation to describe the effect of temperature and prey density on the predation rate of Phytoseiulus persimilis was derived. The results showed that more prey are eaten as the temperature increases from 15 degrees C to 25 degrees C, but the number of prey eaten then declines at 30 degrees C, although not to the levels seen at 20 degrees C. The implication of these results for biological control in ornamental crops, where the temperature can often exceed 30 degrees C, is discussed.
Nitrate is necessary for agricultural productivity, but can cause considerable problems if released into aquatic systems. Agricultural land is the major source of nitrates in UK groundwater. Due to the long time-lag in the groundwater system, it could take decades for leached nitrate from the soil to discharge into freshwaters. However, this nitrate time-lag has rarely been considered in environmental water management. Against this background, this paper presents an approach to modelling groundwater nitrate at the national scale, to simulate the impacts of historical nitrate loading from agricultural land on the evolution of groundwater nitrate concentrations. An additional process-based component was constructed for the saturated zone of significant aquifers in England and Wales. This uses a simple flow model which requires modelled recharge values, together with published aquifer properties and thickness data. A spatially distributed and temporally variable nitrate input function was also introduced. The sensitivity of parameters was analysed using Monte Carlo simulations. The model was calibrated using national nitrate monitoring data. Time series of annual average nitrate concentrations along with annual spatially distributed nitrate concentration maps from 1925 to 2150 were generated for 28 selected aquifer zones. The results show that 16 aquifer zones have an increasing trend in nitrate concentration, while average nitrate concentrations in the remaining 12 are declining. The results are also indicative of the trend in the flux of groundwater nitrate entering rivers through baseflow. The model thus enables the magnitude and timescale of groundwater nitrate response to be factored into source apportionment tools and to be taken into account alongside current planning of land-management options for reducing nitrate losses.
Summary 1.Polyphagous predators, such as spiders and beetles, perform a fundamental ecosystem service as regulators of agricultural pests, particularly aphids. They are most effective when they colonize the crop before the pest has reached its exponential growth phase. However, this is also when predators find themselves in a state of near-starvation. 2. Predator numbers can be enhanced by applications of different types of organic matter, but the mechanism is not clearly understood. One hypothesis is that compost applied to the field may introduce a new detrital food chain to maintain predators until the pest arrives, but this may also be detrimental to effective pest control, fostering a surplus of alternative prey and causing a switch away from the pest. To elucidate these possible outcomes, we report on the use of within-field compost applications on aphids and their predators, presenting 4 years of field-scale manipulations. 3. We found both direct and indirect links between compost, aphids and predators. In years when compost-treated plots had significantly higher numbers of predators, aphids were in significantly lower numbers than in plots without compost. Conversely, when there was a lack of response by predators, aphid numbers showed similar trends in all treatments. 4. In all years, alternative prey responded strongly to compost application and did not fluctuate at the level shown by predators, suggesting that these two prey groups were decoupled. Instead, the predicted positive feedback of compost on predators numbers was either weak or absent. 5. Synthesis and applications . The effect of compost on aphids clearly requires further practical refinement if it is to provide constant pest suppression, making it difficult to provide specific management recommendations at this stage. In the short term, compost application may not always confer immediate benefits in terms of pest control alone but this must be set against other better known benefits (moisture retention, nutrients). In the long term, experiments measuring the full trophic pathway are needed to unravel the effects of organic matter type, application time and the siting of compost relative to the crop in order to optimise pest suppression potential.
The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.
HighlightsStakeholders scored ninety measures for water pollution from agriculture.Model optimisation shortlisted twelve measures for livestock and arable farms.Shortlisted measures reduced national nitrate load to rivers by 2.5%, sediment 5.6%.Shortlisted measures reduced national phosphorus load to rivers by 11.9%.Annual cost to farms at national scale was £450 M equating to £52 per hectare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.