Tropical reefs have been impacted by thermal anomalies caused by global warming that induced coral bleaching and mortality events globally. However, there have only been very few recordings of bleaching within the Red Sea despite covering a latitudinal range of 15° and consequently it has been considered a region that is less sensitive to thermal anomalies. We therefore examined historical patterns of sea surface temperature (SST) and associated anomalies (1982-2012) and compared warming trends with a unique compilation of corresponding coral bleaching records from throughout the region. These data indicated that the northern Red Sea has not experienced mass bleaching despite intensive Degree Heating Weeks (DHW) of >15°C-weeks. Severe bleaching was restricted to the central and southern Red Sea where DHWs have been more frequent, but far less intense (DHWs <4°C-weeks). A similar pattern was observed during the 2015-2016 El Niño event during which time corals in the northern Red Sea did not bleach despite high thermal stress (i.e. DHWs >8°C-weeks), and bleaching was restricted to the central and southern Red Sea despite the lower thermal stress (DHWs < 8°C-weeks). Heat stress assays carried out in the northern (Hurghada) and central (Thuwal) Red Sea on four key reef-building species confirmed different regional thermal susceptibility, and that central Red Sea corals are more sensitive to thermal anomalies as compared to those from the north. Together, our data demonstrate that corals in the northern Red Sea have a much higher heat tolerance than their prevailing temperature regime would suggest. In contrast, corals from the central Red Sea are close to their thermal limits, which closely match the maximum annual water temperatures. The northern Red Sea harbours reef-building corals that live well below their bleaching thresholds and thus we propose that the region represents a thermal refuge of global importance.
Occurrences whereby cnidaria lose their symbiotic dinoflagellate microalgae (Symbiodinium spp.) are increasing in frequency and intensity. These so-called bleaching events are most often related to an increase in water temperature, which is thought to limit certain Symbiodinium phylotypes from effectively dissipating absorbed excitation energy that is otherwise used for photochemistry. Here, we examined photosynthetic characteristics and hydrogen peroxide (H2 O2 ) production, a possible signal involved in bleaching, from two Symbiodinium types (a thermally "tolerant" A1 and "sensitive" B1) representative of cnidaria-Symbiodinium symbioses of reef-building Caribbean corals. Under steady-state growth at 26°C, a higher efficiency of PSII photochemistry, rate of electron turnover, and rate of O2 production were observed for type A1 than for B1. The two types responded very differently to a period of elevated temperature (32°C): type A1 increased light-driven O2 consumption but not the amount of H2 O2 produced; in contrast, type B1 increased the amount of H2 O2 produced without an increase in light-driven O2 consumption. Therefore, our results are consistent with previous suggestions that the thermal tolerance of Symbiodinium is related to adaptive constraints associated with photosynthesis and that sensitive phylotypes are more prone to H2 O2 production. Understanding these adaptive differences in the genus Symbiodinium will be crucial if we are to interpret the response of symbiotic associations, including reef-building corals, to environmental change.
The bleaching of corals in response to increases in temperature has resulted in significant coral reef degradation in many tropical marine ecosystems. This bleaching has frequently been attributed to photoinhibition of photosynthetic electron transport and the consequent photodamage to photosystem II (PSII) and the production of damaging reactive oxygen species (ROS) in the zooxanthellae (Symbiodinium spp.). However, these events may be because of perturbations of other processes occurring within the zooxanthellae or the host cells, and consequently constitute only secondary responses to temperature increase. The processes involved with the onset of photoinhibition of electron transport, photodamage to PSII and pigment bleaching in coral zooxanthellae are reviewed. Consideration is given to how increases in temperature might lead to perturbations of metabolic processes in the zooxanthellae and/or their host cells, which could trigger events leading to bleaching. It is concluded that production of ROS by the thylakoid photosynthetic apparatus in the zooxanthellae plays a major role in the onset of bleaching resulting from photoinhibition of photosynthesis, although it is not clear which particular ROS are involved. It is suggested that hydrogen peroxide generated in the zooxanthellae may have a signalling role in triggering the mechanisms that result in expulsion of zooxanthellae from corals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.