BACKGROUND-Brugada syndrome (BrS) is a common heritable channelopathy. Mutations in the SCN5A-encoded sodium channel (BrS1) culminate in the most common genotype.
Background— The KCNH2 or human ether-a-go-go related gene ( hERG ) encodes the Kv11.1 α-subunit of the rapidly activating delayed rectifier K + current ( I Kr ) in the heart. Type 2 congenital long-QT syndrome (LQT2) results from KCNH2 mutations that cause loss of Kv11.1 channel function. Several mechanisms have been identified, including disruption of Kv11.1 channel synthesis (class 1), protein trafficking (class 2), gating (class 3), or permeation (class 4). For a few class 2 LQT2-Kv11.1 channels, it is possible to increase surface membrane expression of Kv11.1 current ( I Kv11.1 ). We tested the hypotheses that (1) most LQT2 missense mutations generate trafficking-deficient Kv11.1 channels, and (2) their trafficking-deficient phenotype can be corrected. Methods and Results— Wild-type (WT)-Kv11.1 channels and 34 missense LQT2-Kv11.1 channels were expressed in HEK293 cells. With Western blot analyses, 28 LQT2-Kv11.1 channels had a trafficking-deficient (class 2) phenotype. For the majority of these mutations, the class 2 phenotype could be corrected when cells were incubated for 24 hours at reduced temperature (27°C) or in the drugs E4031 or thapsigargin. Four of the 6 LQT2-Kv11.1 channels that had a wild-type–like trafficking phenotype did not cause loss of Kv11.1 function, which suggests that these channels are uncommon sequence variants. Conclusions— This is the first study to identify a dominant mechanism, class 2, for the loss of Kv11.1 channel function in LQT2 and to report that the class 2 phenotype for many of these mutant channels can be corrected. This suggests that if therapeutic strategies to correct protein trafficking abnormalities can be developed, it may offer clinical benefits for LQT2 patients.
Background-Congenital long-QT syndrome (LQTS) is a primary arrhythmogenic syndrome stemming from perturbed cardiac repolarization. LQTS, which affects Ϸ1 in 3000 persons, is 1 of the most common causes of autopsy-negative sudden death in the young. Since the sentinel discovery of cardiac channel gene mutations in LQTS in 1995, hundreds of mutations in 8 LQTS susceptibility genes have been identified. All 8 LQTS genotypes represent primary cardiac channel defects (ie, ion channelopathy) except LQT4, which is a functional channelopathy because of mutations in ankyrin-B. Approximately 25% of LQTS remains unexplained pathogenetically. We have pursued a "final common pathway" hypothesis to elicit novel LQTS-susceptibility genes. With the recent observation that the LQT3-associated, SCN5A-encoded cardiac sodium channel localizes in caveolae, which are known membrane microdomains whose major component in the striated muscle is caveolin-3, we hypothesized that mutations in caveolin-3 may represent a novel pathogenetic mechanism for LQTS. Methods and Results-Using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct DNA sequencing, we performed open reading frame/splice site mutational analysis on CAV3 in 905 unrelated patients referred for LQTS genetic testing. CAV3 mutations were engineered by site-directed mutagenesis and the molecular phenotype determined by transient heterologous expression into cell lines that stably express the cardiac sodium channel hNa v 1.5. We identified 4 novel mutations in CAV3-encoded caveolin-3 that were absent in Ͼ1000 control alleles. Electrophysiological analysis of sodium current in HEK293 cells stably expressing hNa v 1.5 and transiently transfected with wild-type and mutant caveolin-3 demonstrated that mutant caveolin-3 results in a 2-to 3-fold increase in late sodium current compared with wild-type caveolin-3. Our observations are similar to the increased late sodium current associated with LQT3-associated SCN5A mutations. Conclusions-The present study reports the first CAV3 mutations in subjects with LQTS, and we provide functional data demonstrating a gain-of-function increase in late sodium current. (Circulation. 2006;114:2104-2112.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.