Optical technology is poised to revolutionise short reach interconnects. The leading candidate technology is silicon photonics, and the workhorse of such interconnect is the optical modulator. Modulators have been improved dramatically in recent years. Most notably the bandwidth has increased from the MHz to the multi GHz regime in little more than half a decade. However, the demands of optical interconnect are significant, and many questions remain unanswered as to whether silicon can meet the required performance metrics.Minimising metrics such as the energy per bit, and device footprint, whilst maximising bandwidth and modulation depth are non trivial demands. All of this must be achieved with acceptable thermal tolerance and optical spectral width, using CMOS compatible fabrication processes. Here we discuss the techniques that have, and will, be used to implement silicon optical modulators, as well as the outlook for these devices, and the candidate solutions of the future.
Silicon photonics research can be dated back to the 1980s. However, the previous decade has witnessed an explosive growth in the field. Silicon photonics is a disruptive technology that is poised to revolutionize a number of application areas, for example, data centers, high-performance computing and sensing. The key driving force behind silicon photonics is the ability to use CMOS-like fabrication resulting in high-volume production at low cost. This is a key enabling factor for bringing photonics to a range of technology areas where the costs of implementation using traditional photonic elements such as those used for the telecommunications industry would be prohibitive. Silicon does however have a number of shortcomings as a photonic material. In its basic form it is not an ideal material in which to produce light sources, optical modulators or photodetectors for example. A wealth of research effort from both academia and industry in recent years has fueled the demonstration of multiple solutions to these and other problems, and as time progresses new approaches are increasingly being conceived. It is clear that silicon photonics has a bright future. However, with a growing number of approaches available, what will the silicon photonic integrated circuit of the future look like? This roadmap on silicon photonics delves into the different technology and application areas of the field giving an insight into the state-of-the-art as well as current and future challenges faced by researchers worldwide. Contributions authored by experts from both industry and academia provide an overview and outlook for the silicon waveguide platform, optical sources, optical modulators, photodetectors, integration approaches, packaging, applications of silicon photonics and approaches required to satisfy applications at mid-infrared wavelengths. Advances in science and technology required to meet challenges faced by the field in each of these areas are also addressed together with predictions of where the field is destined to reach.
Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.
Optical modulators formed in silicon are the keystone to many low cost optical applications. Increasing the data rate of the modulator benefits the efficiency of channel usage and decreases power consumption per bit of data. Silicon-based modulators which operate via carrier depletion have to the present been demonstrated at data rates up to 40 Gb/s; however, here we present for the first time optical modulation at 50 Gb/s with a 3.1-dB extinction ratio obtained from carrier depletion based phase shifter incorporated in a Mach-Zehnder interferometer. A corresponding optical insertion loss of approximately 7.4 dB is measured.Index Terms-High speed, Mach-Zehnder interferometer (MZI), optical modulator, silicon photonics.
With continued steep growth in the volume of data transmitted over optical networks there is a widely recognized need for more sophisticated photonics technologies to forestall a 'capacity crunch' 1 . A promising solution is to open new spectral regions at wavelengths near 2 μm and to exploit the long-wavelength transmission and amplification capabilities of hollowcore photonic-bandgap fibres 2,3 and the recently available thulium-doped fibre amplifiers 4 . To date, photodetector devices for this window have largely relied on III-V materials 5 or, where the benefits of integration with silicon photonics are sought, GeSn alloys, which have been demonstrated thus far with only limited utility 6-9 . Here, we describe a silicon photodiode operating at 20 Gbit s -1 in this wavelength region. The detector is compatible with standard silicon processing and is integrated directly with silicon-on-insulator waveguides, which suggests future utility in silicon-based mid-infrared integrated optics for applications in communications.The advantages of silicon photonics, which have been well documented for traditional communication wavelengths around 1.3 and 1.5 µm (refs 8,9), extend to operation in the mid-infrared (MIR) region 10 . Silicon photonic components are fabricated using complementary metal-oxide semiconductor (CMOS)-compatible technologies, with the potential for integration with electronic control. Recently, groups have demonstrated several silicon-based components operating in the MIR wavelength range of 2-20 μm, including low-loss waveguides, couplers, splitters and multiplexers 11 , as well as some with hybrid active functionality 12,13 . However, photodetectors that are compatible with silicon waveguides, are capable of detection beyond 2 μm, and operate at the bandwidths required by future optical communication networks remain elusive. The sig-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.