There is concern about historical and continuing loss of canopy-forming algae across the world's temperate coastline. In South Australia, the sparse cover of canopy-forming algae on the Adelaide metropolitan coast has been of public concern with continuous years of anecdotal evidence culminating in 2 competing views. One view considers that current patterns existed before the onset of urbanisation, whereas the alternate view is that they developed after urbanisation. We tested hypotheses to distinguish between these 2 models, each centred on the reconstruction of historical covers of canopies on the metropolitan coast. Historically, the metropolitan sites were indistinguishable from contemporary populations of reference sites across 70 km (i.e. Gulf St. Vincent), and could also represent a random subset of exposed coastal sites across 2100 km of the greater biogeographic province. Thus there was nothing 'special' about the metropolitan sites historically, but today they stand out because they have sparser covers of canopies compared to equivalent locations and times in the gulf and the greater province. This is evidence of wholesale loss of canopy-forming algae (up to 70%) on parts of the Adelaide metropolitan coast since major urbanisation. These findings not only set a research agenda based on the magnitude of loss, but they also bring into question the logic that smaller metropolitan populations of humans create impacts that are trivial relative to that of larger metropolitan centres. Instead, we highlight a need to recognise the ecological context that makes some coastal systems more vulnerable or resistant to increasing human-domination of the world's coastlines. We discuss challenges to this kind of research that receive little ecological discussion, particularly better leadership and administration, recognising that the systems we study out-live the life spans of individual research groups and operate on spatial scales that exceed the capacity of single research providers.
We present the second public data release of the Dark Energy Survey, DES DR2, based on optical/near-infrared imaging by the Dark Energy Camera mounted on the 4 m Blanco telescope at Cerro Tololo Inter-American Observatory in Chile. DES DR2 consists of reduced single-epoch and coadded images, a source catalog derived from coadded images, and associated data products assembled from 6 yr of DES science operations. This release includes data from the DES wide-area survey covering ∼5000 deg 2 of the southern Galactic cap in five broad photometric bands, grizY. DES DR2 has a median delivered point-spread function FWHM of g = 1.11″, r = 0.95″, i = 0.88″, z = 0.83″, and Y = 0 90, photometric uniformity with a standard deviation of < 3 mmag with respect to Gaia DR2 G band, a photometric accuracy of ∼11 mmag, and a median internal astrometric precision of ∼27 mas. The median coadded catalog depth for a 1 95 diameter aperture at signal-to-noise ratio = 10 is g = 24.7, r = 24.4, i = 23.8, z = 23.1, and Y = 21.7 mag. DES DR2 includes ∼691 million distinct astronomical objects detected in 10,169 coadded image tiles of size 0.534 deg 2 produced from 76,217 single-epoch images. After a basic quality selection, benchmark galaxy and stellar samples contain 543 million and 145 million objects, respectively. These data are accessible through several interfaces, including interactive image visualization tools, web-based query clients, image cutout servers, and Jupyter notebooks. DES DR2 constitutes the largest photometric data set to date at the achieved depth and photometric precision.
The Dark Energy Survey (DES) is an optical and near-infrared imaging survey aimed at understanding the accelerating expansion of the universe using four complementary methods: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the 6-season 5000 sq-degree wide field and the 5season 30 sq-degree supernova surveys, the DES Collaboration built the Dark Energy Camera (DECam), a 3 squaredegree, 570-Megapixel CCD camera that was installed at the prime focus of the Blanco 4-meter telescope at the Cerro Tololo Inter-American Observatory (CTIO). DES started its observations in "Year 1" (Y1) on Aug. 31, 2013 and completed its sixth and final observing season on January 9, 2019. This paper describes DES Y6, the survey strategy, an outline of the survey operations procedures, the efficiency of operations and the causes of lost observing time. It provides details about the quality of the final season's data, and a summary of the Y1-Y6 observing. It contains a brief description of the last night of observations.
We present a sample of 706, z < 1.5 active galactic nuclei (AGNs) selected from optical photometric variability in three of the Dark Energy Survey (DES) deep fields (E2, C3, and X3) over an area of 4.64 deg2. We construct light curves using difference imaging aperture photometry for resolved sources and non-difference imaging PSF photometry for unresolved sources, respectively, and characterize the variability significance. Our DES light curves have a mean cadence of 7 days, a 6 year baseline, and a single-epoch imaging depth of up to g ∼ 24.5. Using spectral energy distribution (SED) fitting, we find 26 out of total 706 variable galaxies are consistent with dwarf galaxies with a reliable stellar mass estimate (M* < 109.5 M⊙; median photometric redshift of 0.9). We were able to constrain rapid characteristic variability timescales (∼ weeks) using the DES light curves in 15 dwarf AGN candidates (a subset of our variable AGN candidates) at a median photometric redshift of 0.4. This rapid variability is consistent with their low black hole masses. We confirm the low-mass AGN nature of one source with a high S/N optical spectrum. We publish our catalog, optical light curves, and supplementary data, such as X-ray properties and optical spectra, when available. We measure a variable AGN fraction versus stellar mass and compare to results from a forward model. This work demonstrates the feasibility of optical variability to identify AGNs with lower black hole masses in deep fields, which may be more ‘pristine’ analogs of supermassive black hole seeds.
In this paper, we present the X-ray analysis of SDSS DR8 redMaPPer (SDSSRM) clusters using data products from the XMM Cluster Survey (XCS). In total, 1189 SDSSRM clusters fall within the XMM-Newton footprint. This has yielded 456 confirmed detections accompanied by X-ray luminosity (LX) measurements. Of these clusters, 381 have an associated X-ray temperature measurement (TX). This represents one of the largest samples of coherently derived cluster TX values to date. Our analysis of the X-ray observable to richness scaling relations has demonstrated that scatter in the TX − λ relation is roughly a third of that in the LX − λ relation, and that the LX − λ scatter is intrinsic, i.e. will not be significantly reduced with larger sample sizes. Analysis of the scaling relation between LX and TX has shown that the fits are sensitive to the selection method of the sample, i.e. whether the sample is made up of clusters detected “serendipitously” compared to those deliberately targeted by XMM. These differences are also seen in the LX − λ relation and, to a lesser extent, in the TX − λ relation. Exclusion of the emission from the cluster core does not make a significant impact on the findings. A combination of selection biases is a likely, but yet unproven, reason for these differences. Finally, we have also used our data to probe recent claims of anisotropy in the LX − TX relation across the sky. We find no evidence of anistropy, but stress this may be masked in our analysis by the incomplete declination coverage of the SDSS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.