The use of one-dimensional reactor models to simulate industrial steam cracking reactors has been one of the main limiting factors for the development of new reactor designs and the evaluation of existing three-dimensional (3-D) reactor configurations. Therefore, a 3-D computational fluid dynamics approach is proposed in which the detailed free-radical chemistry is for the first time accounted for. As a demonstration case, the application of longitudinally and helicoidally finned tubes as steam cracking reactors was investigated under industrially relevant conditions. After experimental validation of the modeling approach, a comprehensive parametric study allowed to identify optimal values of the fin parameters, that is, fin height, number of fins, and helix angle to maximize heat transfer. Reactive simulations of an industrial Millisecond propane cracker were performed for four distinct finned reactors using a reaction network of 26 species and 203 elementary reactions. The start-of-run tube metal skin temperatures could be reduced by up to 50 K compared to conventionally applied tubular reactors when applying optimal fin parameters. Implementation of a validated coking model for light feedstocks shows that coking rates are reduced up to 50%. However, the increased friction and inner surface area lead to pressure drops higher by a factor from 1.22 to 1.66 causing minor but significant shifts in light olefin selectivity. For the optimized helicoidally finned reactor the ethene selectivity dropped, whereas propene and 1,3-butadiene selectivity increased with a similar amount. The presented methodology can be applied in a straightforward way to other 3-D reactor designs and can be extended to more complex feedstocks such as naphtha.
The enhancement of convective heat transfer in single-phase heat transfer through the use of helicoidally corrugated tubes has been studied numerically. By comparing the large eddy simulation (LES) results with detailed Stereo-PIV and Liquid Crystal Thermography measurements obtained at the von Karman Institute for Fluid Dynamics (VKI), a validated numerical framework was obtained. Heat transfer enhancements of 83-119% were seen, at the cost of pressure losses that were approximately 5.6 to 6.7 times higher than for a bare tube. To extrapolate the results to industrial Reynolds numbers at which experimental data is scarce, the simulation data was used to develop an improved near-wall Reynolds stress transport model (RSTM) that more accurately describes the heat flux vector. Comparison of both global and local flow characteristics at different Reynolds numbers confirms that the approach allows more accurate predictions over a wider range of design and operating parameters than using two-equation turbulence models, while the computational cost is still significantly lower than LES.
Using detailed kinetic models in computational fluid dynamics (CFD) simulations is extremely challenging because of the large number of species that need to be considered and the stiffness of the associated set of differential equations. The high computational cost associated with using a detailed kinetic network in CFD simulations is why one-dimensional simulations are still used, although this leads to substantial differences compared to reference three-dimensional simulations. Therefore, a methodology was developed that allows one to use detailed single-event microkinetic models in CFD simulations by on the fly application of the pseudo-steady-state assumption to the radical reaction intermediates. Depending on the reaction model size, a speedup factor of more than 50 was obtained compared to the standard ANSYS Fluent routines without losing accuracy. As proof of concept, propane steam cracking in a conventional bare reactor and a helicoidally finned reactor was simulated using a reaction model containing 85 species: 41 radicals and 44 transported species. Next to a drastic speedup of the simulations due to the kinetic network reduction technique, significant differences were observed between the bare and the finned reactor in the three-dimensional simulations. In particular, the ethene selectivity is reduced by 0.20% by application of the helicoidally finned reactor. The one-dimensional simulations were not able to correctly predict the selectivity effect of the different reactor geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.