Aphids (superfamily Aphidoidea) contain eubacterial endosymbionts localized within specialized cells (mycetocytes). The endosymbionts are essential for the survival of the aphid hosts. Sequence analyses of the 16S rRNAs from endosymbionts of 11 aphid species from seven tribes and four families have indicated that the endosymbionts are monophyletic. Furthermore, phylogenetic relationships within the symbiont clade parallel the relationships of the corresponding aphid hosts. Our findings suggest that this endocytobiotic association was established in a common ancestor of the four aphid families with subsequent diversification into the present species of aphids and their endosymbionts.
Shortly after its arrival, the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), became established as the most important insect pest of soybean, Glycine max L. (Merr.), in the northern part of the North American soybean production region. Soybean resistance is an environmentally sustainable method to manage the pest and new soybean aphid resistant cultivars are beginning to be deployed into production. However, an earlier study identifying a soybean aphid biotype that could colonize plants with the Rag1 resistance gene has raised concerns about the durability of soybean aphid resistance genes. Choice and nonchoice tests conducted in this study characterized the colonization of a soybean aphid isolate, collected from the overwintering host Frangula alnus P. Mill in Springfield Fen, IN, on different aphid resistant soybean genotypes. This isolate readily colonized plants with the Rag2 resistance gene, distinguishing it from the two biotypes previously characterized and indicating that it represented a new biotype named biotype 3. The identification of soybean aphid biotypes that can overcome Rag1 and Rag2 resistance, even before soybean cultivars with the resistance genes have been deployed in production, suggests that there is high variability in virulence within soybean aphid populations present in North America. Such variability in virulence gives the pest a high potential to adapt to and reduce the effective life of resistance genes deployed in production. The search for new soybean aphid resistance genes must, therefore, continue, along with the development of alternative sustainable strategies to manage the pest.
During August of the 2000 growing season, Aphis glycines Matsumura, an aphid native to Asia, was found colonizing soybean plants in Illinois. Accepted for publication 1 February 2001. Published 5 February 2001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.