The high frequency of activating RAS or BRAF mutations in cancer provides strong rationale for targeting the mitogen-activated protein kinase (MAPK) pathway. Selective BRAF and MAP-ERK kinase (MEK) inhibitors have shown clinical effi cacy in patients with melanoma. However, the majority of responses are transient, and resistance is often associated with pathway reactivation of the extracellular signal-regulated kinase (ERK) signaling pathway. Here, we describe the identifi cation and characterization of SCH772984, a novel and selective inhibitor of ERK1/2 that displays behaviors of both type I and type II kinase inhibitors. SCH772984 has nanomolar cellular potency in tumor cells with mutations in BRAF , NRAS , or KRAS and induces tumor regressions in xenograft models at tolerated doses. Importantly, SCH772984 effectively inhibited MAPK signaling and cell proliferation in BRAF or MEK inhibitor-resistant models as well as in tumor cells resistant to concurrent treatment with BRAF and MEK inhibitors. These data support the clinical development of ERK inhibitors for tumors refractory to MAPK inhibitors. SIGNIFICANCE: BRAF and MEK inhibitors have activity in MAPK-dependent cancers with BRAF or RAS mutations. However, resistance is associated with pathway alterations resulting in phospho-ERK reactivation. Here, we describe a novel ERK1/2 kinase inhibitor that has antitumor activity in MAPK inhibitor-naïve and MAPK inhibitor-resistant cells containing BRAF or RAS mutations. Cancer Discov; 3(7); 742-50.
The fungal metabolite lovastatin (1) 1 and its derivatives are cholesterol-lowering drugs that act as potent inhibitors of (3S)hydroxy-3-methylglutaryl-coenzyme A reductase. 2 Although 1 and compactin 3 have attracted attention from synthetic chemists, 4 these drugs and some analogues (e.g., simvastatin, pravastatin) which are used in humans are manufactured by fermentation, either directly or with subsequent chemical or microbial modification. Studies on the biosynthesis of 1 in Aspergillus terreus indicate that it is formed by a polyketide pathway. [5][6][7] Of special interest is the proposal of an enzyme-catalyzed Diels-Alder cyclization of the intermediate hexaketide triene to generate the decalin system (Figure 1). 7,8 This idea is supported by the formation of dihydromonacolin L (2) 9 by a heterologous host, A. nidulans containing the loVB and loVC genes from A. terreus. 10,11 Corresponding heterologous expression of the loVB protein (lovastatin nonaketide synthase, LNKS) without loVC leads to truncated pyrones 3 and 4, formed due to failure of enoyl reduction at the tetraketide stage. 10 There are proposals that enzyme-catalyzed Diels Alder reactions may occur during biosynthesis of many secondary metabolites, 12 but the demonstrated ability of pure biological macromolecules to promote this process has been limited to catalytic antibodies generated from synthetic haptens 13 and to synthetic RNA fragments that bind metals. 14 There is also a report of a crude cellfree preparation from the fungus Alternaria solani that oxidizes an achiral allylic alcohol, prosolanopyrone II, to a conjugated triene aldehyde, thereby triggering intramolecular Diels-Alder cyclization to an optically active product, solanopyrone A. 15 We now report that purified LNKS catalyzes intramolecular Diels-Alder endo closure of a substrate analogue, (E,E,E)-(R)-6-methyldodecatri-2,8,10-enoic acid N-acetylcysteamine (NAC) thioester (5), to a bicyclic system with the same ring stereochemistry as 2, which is different from that obtained in nonenzymatic cyclization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.