These data suggest the importance of neural integrity to maintain penile homeostasis. The loss in penile weight was consistent with the anecdotal experience of many clinicians. Decreased DNA content may have been due to significant levels of apoptosis in smooth muscle cells. Preserved protein content may suggest an increase in extracellular protein, as postulated in corporeal fibrosis. The subtunical population of apoptotic smooth muscle cells revealed a mechanism for veno-occlusive dysfunction observed after radical prostatectomy. These effects were significantly moderated in the unilateral model, reinforcing the critical nature of neural integrity.
The penis is unique in that it undergoes morphogenesis and differentiation primarily in the postnatal period. For complex structures such as the penis to be made from undifferentiated precursor cells, proliferation, differentiation, and patterning are required. This process involves coordinated activity of multiple signals. Sonic hedgehog (Shh) forms part of a regulatory cascade that is essential for growth and morphogenesis of many tissues. It is hypothesized that the penis utilizes regulatory mechanisms similar to those of the limb and accessory sex organs to pattern penile postnatal morphogenesis and differentiation and that the Shh cascade is critical to this process. To test this hypothesis, Shh, BMP-4, Ptc, and Hoxa-10 localization and function were examined in Sprague-Dawley rat penes by means of quantitative reverse transcription polymerase chain reaction, in situ hybridization, immunohistochemistry, and Western blotting. These genes were expressed in the penis during postnatal morphogenesis in a spatially and temporally restricted manner in adjacent layers of the corpora cavernosal sinusoids. The function of Shh and BMP-4 is to establish and maintain corpora cavernosal sinusoids. The data suggest that Ptc and Hoxa-10 are also important in penile morphogenesis. The continuing function of Shh and targets of its signaling in maintaining penile homeostasis in the adult is significant because disruption of Shh signaling affects erectile function. This is the first report that demonstrates the significant role that Shh plays in establishing and maintaining penile homeostasis and how this relates to erectile function. These studies provide valuable insight that may be applied to improve treatment options for erectile dysfunction.
LNCaP is an androgen-sensitive human prostatic cancer cell line. The effect of androgen on these cells is characterized by a bell-shaped growth response and a dose-dependent induction of prostate-specific antigen (PSA) production. The present study was carried out to gain further insight into the effect of androgen on LNCaP. Cells were cultured in phenol red-free RPMI-1640 supplemented with 10% charcoal-stripped fetal bovine serum, with concentrations of dihydrotestosterone (DHT) ranging from 0-10(-7) M, in a 4-day culture system. A bell-shaped growth response was reproduced with a peak level of cell count at 10(-10) M DHT. PSA secretion from these cells did not increase significantly until the DHT level in the medium reached 10(-9) M. A progressive increase in PSA secretion was observed at higher DHT concentrations accompanied with a progressive decline in cellular proliferation. The results of immunocytochemical analysis of PSA localization indicated that the proportion of cells with positive staining for PSA also increased with increasing concentrations of DHT. Analysis of androgen receptors, as determined by both immunocytochemistry and Western blot analysis, showed a decline in nuclear androgen receptor at low concentrations of DHT and an increase in the amount of receptor protein at high concentrations. These results indicated that the androgen-induced bell-shaped growth response in LNCaP cells represented the manifestation of two different cellular events in dose-related manner: cellular proliferation at low DHT concentrations and increased production of PSA at high DHT concentrations.
Erectile dysfunction (ED) is a common and debilitating pathological development that affects up to 75% of diabetic males. Neural stimulation is a crucial aspect of the normal erection process. Nerve injury causes ED and disrupts signaling of the Sonic hedgehog (Shh) cascade in the smooth muscle of the corpora cavernosa. Shh and targets of its signaling establish normal corpora cavernosal morphology during postnatal differentiation of the penis and regulate homeostasis in the adult. Interruption of the Shh cascade in the smooth muscle of the corpora cavernosa results in extensive changes in corpora cavernosal morphology that lead to ED. Our hypothesis is that the neuropathy observed in diabetics causes morphological changes in the corpora cavernosa of the penis that result in ED. Disruption of the Shh cascade may be involved in this process. We tested this hypothesis by examining morphological changes in the penis, altered gene and protein expression, apoptosis, and bromodeoxyuridine incorporation in the BB/WOR rat model of diabetes. Extensive smooth muscle and endothelial degradation was observed in the corpora cavernosa of diabetic penes. This degradation accompanied profound ED, significantly decreased Shh protein in the smooth muscle of the corpora cavernosa, and increased penile Shh RNA expression in the intact penis (nerves, corpora, and urethra). Localization and expression of Shh targets were also disrupted in the corpora cavernosa. Increasing our understanding of the molecular mechanisms that regulate Shh signaling may provide valuable insight into improving treatment options for diabetic impotence.
Optimal treatment of erectile dysfunction (ED) following radical prostatectomy remains a subject of much controversy and is a significant concern for prostate cancer patients requiring surgical intervention. Neural stimulation involving nitric oxide synthase (NOS) is a crucial aspect of the normal erection process. In this study NOS isoform interaction was evaluated to improve our understanding of molecular changes pertaining to erection post radical prostatectomy. Bilateral cavernous nerve (CN) resected and control adult male Sprague-Dawley rats were killed 7, 14 and 21 days after injury. RT-PCR, in situ hybridization, Western blot and immunohistochemical analysis were used to evaluate changes in NOS isoform expression and distribution. NOS-I protein was dramatically decreased after CN injury while NOS-III and NOS-II remained unchanged. A profound decrease in smooth muscle and endothelium was observed in the corpora. To our knowledge this is the first report of differential altered NOS isoform protein abundance under conditions which mimic radical prostatectomy. These results show the importance of maintaining at least partial innervation of the penis after surgical intervention and that endothelial and smooth muscle changes resulting from loss of innervation may account for the ED observed in prostatectomy patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.