Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.
Barrett’s Esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia. Barrett’s Esophagus strongly predisposes to esophageal adenocarcinoma (EAC), a tumour with a very poor prognosis. We have undertaken the first genome-wide association study on Barrett’s Esophagus, comprising 1,852 UK cases and 5,172 UK controls in discovery and 5,986 cases and 12,825 controls in the replication. Two regions were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10−9, OR(95%CI) =1.21(1.13-1.28)) and chromosome 16q24, rs9936833 (Pcombined=2.74×10−10, OR(95%CI) =1.14(1.10-1.19)). The top SNP on chromosome 6p21 is within the major histocompatibility complex, and the closest protein-coding gene to rs9936833 on chromosome 16q24 is FOXF1, which is implicated in esophageal development and structure. We found evidence that the genetic component of Barrett’s Esophagus is mediated by many common variants of small effect and that SNP alleles predisposing to obesity also increase risk for Barrett’s Esophagus.
SummaryBackgroundOesophageal adenocarcinoma is the sixth most common cause of cancer death worldwide and Barrett's oesophagus is the biggest risk factor. We aimed to evaluate the efficacy of high-dose esomeprazole proton-pump inhibitor (PPI) and aspirin for improving outcomes in patients with Barrett's oesophagus.MethodsThe Aspirin and Esomeprazole Chemoprevention in Barrett's metaplasia Trial had a 2 × 2 factorial design and was done at 84 centres in the UK and one in Canada. Patients with Barrett's oesophagus of 1 cm or more were randomised 1:1:1:1 using a computer-generated schedule held in a central trials unit to receive high-dose (40 mg twice-daily) or low-dose (20 mg once-daily) PPI, with or without aspirin (300 mg per day in the UK, 325 mg per day in Canada) for at least 8 years, in an unblinded manner. Reporting pathologists were masked to treatment allocation. The primary composite endpoint was time to all-cause mortality, oesophageal adenocarcinoma, or high-grade dysplasia, which was analysed with accelerated failure time modelling adjusted for minimisation factors (age, Barrett's oesophagus length, intestinal metaplasia) in all patients in the intention-to-treat population. This trial is registered with EudraCT, number 2004-003836-77.FindingsBetween March 10, 2005, and March 1, 2009, 2557 patients were recruited. 705 patients were assigned to low-dose PPI and no aspirin, 704 to high-dose PPI and no aspirin, 571 to low-dose PPI and aspirin, and 577 to high-dose PPI and aspirin. Median follow-up and treatment duration was 8·9 years (IQR 8·2–9·8), and we collected 20 095 follow-up years and 99·9% of planned data. 313 primary events occurred. High-dose PPI (139 events in 1270 patients) was superior to low-dose PPI (174 events in 1265 patients; time ratio [TR] 1·27, 95% CI 1·01–1·58, p=0·038). Aspirin (127 events in 1138 patients) was not significantly better than no aspirin (154 events in 1142 patients; TR 1·24, 0·98–1·57, p=0·068). If patients using non-steroidal anti-inflammatory drugs were censored at the time of first use, aspirin was significantly better than no aspirin (TR 1·29, 1·01–1·66, p=0·043; n=2236). Combining high-dose PPI with aspirin had the strongest effect compared with low-dose PPI without aspirin (TR 1·59, 1·14–2·23, p=0·0068). The numbers needed to treat were 34 for PPI and 43 for aspirin. Only 28 (1%) participants reported study-treatment-related serious adverse events.InterpretationHigh-dose PPI and aspirin chemoprevention therapy, especially in combination, significantly and safely improved outcomes in patients with Barrett's oesophagus.FundingCancer Research UK, AstraZeneca, Wellcome Trust, and Health Technology Assessment.
Optical imaging slit spectroscopy is a powerful method for estimating quantitative changes in cerebral haemodynamics, such as deoxyhaemoglobin, oxyhaemoglobin and blood volume (Hbr, HbO2 and Hbt, respectively). Its disadvantage is that there is a large loss of spatial data as one image dimension is used to encode spectral wavelength information. Single wavelength optical imaging, on the other hand, produces high-resolution spatiotemporal maps of brain activity, but yields only indirect measures of Hbr, HbO2 and Hbt. In this study we perform two-dimensional optical imaging spectroscopy (2D-OIS) in rat barrel cortex during contralateral whisker stimulation to obtain two-dimensional maps over time of Hbr, HbO2 and Hbt. The 2D-OIS was performed by illuminating the cortex with four wavelengths of light (575, 559, 495 and 587 nm), which were presented sequentially at a high frame rate (32 Hz). The contralateral whisker pad was stimulated using two different durations: 1 and 16 s (5 Hz, 1.2 mA). Control experiments used a hypercapnic (5% CO2) challenge to manipulate baseline blood flow and volume in the absence of corresponding neural activation. The 2D-OIS method allowed separation of artery, vein and parenchyma regions. The magnitude of the haemodynamic response elicited varied considerably between different vascular compartments; the largest responses in Hbt were in the arteries and the smallest in the veins. Phase lags in the HbO2 response between arteries and veins suggest that a process of upstream signalling maybe responsible for dilating the arteries. There was also a consistent increase in Hbr from arterial regions after whisker stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.