Modification of bacterial surface structures, such as the lipid A portion of lipopolysaccharide (LPS), is used by many pathogenic bacteria to help evade the host innate immune response. Helicobacter pylori, a gram-negative bacterium capable of chronic colonization of the human stomach, modifies its lipid A by removal of phosphate groups from the 1- and 4′-positions of the lipid A backbone. In this study, we identify the enzyme responsible for dephosphorylation of the lipid A 4′-phosphate group in H. pylori, Jhp1487 (LpxF). To ascertain the role these modifications play in the pathogenesis of H. pylori, we created mutants in lpxE (1-phosphatase), lpxF (4′-phosphatase) and a double lpxE/F mutant. Analysis of lipid A isolated from lpxE and lpxF mutants revealed lipid A species with a 1 or 4′-phosphate group, respectively while the double lpxE/F mutant revealed a bis-phosphorylated lipid A. Mutants lacking lpxE, lpxF, or lpxE/F show a 16, 360 and 1020 fold increase in sensitivity to the cationic antimicrobial peptide polymyxin B, respectively. Moreover, a similar loss of resistance is seen against a variety of CAMPs found in the human body including LL37, β-defensin 2, and P-113. Using a fluorescent derivative of polymyxin we demonstrate that, unlike wild type bacteria, polymyxin readily associates with the lpxE/F mutant. Presumably, the increase in the negative charge of H. pylori LPS allows for binding of the peptide to the bacterial surface. Interestingly, the action of LpxE and LpxF was shown to decrease recognition of Helicobacter LPS by the innate immune receptor, Toll-like Receptor 4. Furthermore, lpxE/F mutants were unable to colonize the gastric mucosa of C57BL/6J and C57BL/6J tlr4 -/- mice when compared to wild type H. pylori. Our results demonstrate that dephosphorylation of the lipid A domain of H. pylori LPS by LpxE and LpxF is key to its ability to colonize a mammalian host.
Despite its highly inflammatory nature, LPS is a molecule with remarkable therapeutic potential. Lipid A is a glycolipid that serves as the hydrophobic anchor of LPS and constitutes a potent ligand of the Toll-like receptor (TLR)4/myeloid differentiation factor 2 receptor of the innate immune system. A less toxic mixture of monophosphorylated lipid A species (MPL) recently became the first new Food and Drug Administration-approved adjuvant in over 70 y. Whereas wild-type Escherichia coli LPS provokes strong inflammatory MyD88 (myeloid differentiation primary response gene 88)-mediated TLR4 signaling, MPL preferentially induces less inflammatory TRIF (TIR-domain-containing adaptor-inducing IFN-β)-mediated responses. Here, we developed a system for combinatorial structural diversification of E. coli lipid A, yielding a spectrum of bioactive variants that display distinct TLR4 agonist activities and cytokine induction. Mice immunized with engineered lipid A/antigen emulsions exhibited robust IgG titers, indicating the efficacy of these molecules as adjuvants. This approach demonstrates how combinatorial engineering of lipid A can be exploited to generate a spectrum of immunostimulatory molecules for vaccine and therapeutics development.
Historically, the O1 El Tor and classical biotypes of Vibrio cholerae have been differentiated by their resistance to the antimicrobial peptide polymyxin B. However, the molecular mechanisms associated with this phenotypic distinction have remained a mystery for 50 y. Both Gram-negative and Gram-positive bacteria modify their cell wall components with amine-containing substituents to reduce the net negative charge of the bacterial surface, thereby promoting cationic antimicrobial peptide resistance. In the present study, we demonstrate that V. cholerae modify the lipid A anchor of LPS with glycine and diglycine residues. This previously uncharacterized lipid A modification confers polymyxin resistance in V. cholerae El Tor, requiring three V. cholerae proteins: Vc1577 (AlmG), Vc1578 (AlmF), and Vc1579 (AlmE). Interestingly, the protein machinery required for glycine addition is reminiscent of the Gram-positive system responsible for D-alanylation of teichoic acids. Such machinery was not thought to be used by Gram-negative organisms. V. cholerae O1 El Tor mutants lacking genes involved in transferring glycine to LPS showed a 100-fold increase in sensitivity to polymyxin B. This work reveals a unique lipid A modification and demonstrates a charge-based remodeling strategy shared between Gram-positive and Gram-negative organisms.outer membrane | cell envelope | endotoxin | ultraviolet photodissociation T he Gram-negative pathogen Vibrio cholerae is the causative agent responsible for ∼300,000 reported cases annually of the severe diarrheal disease cholera. Since 1961, resistance to polymyxin B, a cationic antimicrobial peptide (CAMP), has been used to clinically differentiate between the two V. cholerae O1 biotypes, El Tor and classical (1). Interestingly the O1 classical biotype, which is polymyxin-sensitive, caused the first six cholera pandemics; however, polymyxin-resistant O1 El Tor strains are responsible for the current, seventh pandemic. Despite its importance, the molecular mechanisms accounting for this phenotypic difference have remained unknown for nearly 50 y.During infection, the cells of the innate immune system secrete CAMPs, which are small, positively charged proteins. Much like polymyxin, these peptides bind to and disrupt the bacterial cell membrane, ultimately resulting in death of the invading bacterial cell. Although Gram-negative and Gram-positive bacteria possess different cell wall structures, both have evolved mechanisms to remodel their cell envelope in response to CAMPs. These mechanisms often involve a common theme: neutralizing the negative charge of major cell wall components.The major surface component of Gram-negative bacteria is LPS, which is composed of three distinct regions: lipid A, core oligosaccharide, and O-antigen polysaccharide (2). Lipid A is the bioactive portion of LPS, which activates the human innate immune system through the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 complex (3). The negatively charged lipid A domain is synthesized through a well-...
Similar to most Gram-negative bacteria, the outer leaflet of the outer membrane of Vibrio cholerae is comprised of lipopolysaccharide (LPS). Previous reports have proposed that V. cholerae serogroups O1 and O139 synthesize structurally different lipid A domains, which anchor LPS within the outer membrane. In the current study, intact lipid A species of V. cholerae O1 and O139 were analyzed by mass spectrometry. We demonstrate that V. cholerae serogroups associated with human disease synthesize a similar asymmetrical hexa-acylated lipid A species, bearing a myristate (C14:0) and 3-hydroxylaurate (3-OH C12:0) at the 2′- and 3′-positions, respectively. A previous report from our laboratory characterized the V. cholerae LpxL homologue Vc0213, which transfers a C14:0 to the 2′-position of the glucosamine disaccharide. Our current findings identify V. cholerae Vc0212 as a novel lipid A secondary hydroxyacyltransferase, termed LpxN, responsible for transferring the 3-hydroxylaurate (3-OH C12:0) to the V. cholerae lipid A domain. Importantly, the presence of a 3-hydroxyl group on the 3′-linked secondary acyl chain was found to promote antimicrobial peptide resistance in V. cholerae; however, this functional group was not required for activation of the innate immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.