The microtubule-associated protein tau has risk alleles for both Alzheimer's disease and Parkinson's disease and mutations that cause brain degenerative diseases termed tauopathies. Aggregated tau forms neurofibrillary tangles in these pathologies, but little is certain about the function of tau or its mode of involvement in pathogenesis. Neuronal iron accumulation has been observed pathologically in the cortex in Alzheimer's disease, the substantia nigra (SN) in Parkinson's disease and various brain regions in the tauopathies. Here we report that tau-knockout mice develop age-dependent brain atrophy, iron accumulation and SN neuronal loss, with concomitant cognitive deficits and parkinsonism. These changes are prevented by oral treatment with a moderate iron chelator, clioquinol. Amyloid precursor protein (APP) ferroxidase activity couples with surface ferroportin to export iron, but its activity is inhibited in Alzheimer's disease, thereby causing neuronal iron accumulation. In primary neuronal culture, we found loss of tau also causes iron retention, by decreasing surface trafficking of APP. Soluble tau levels fall in affected brain regions in Alzheimer's disease and tauopathies, and we found a similar decrease of soluble tau in the SN in both Parkinson's disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. These data suggest that the loss of soluble tau could contribute to toxic neuronal iron accumulation in Alzheimer's disease, Parkinson's disease and tauopathies, and that it can be rescued pharmacologically.
Traumatic brain injury is a common and serious neurodegenerative condition that lacks a pharmaceutical intervention to improve long-term outcome. Hyperphosphorylated tau is implicated in some of the consequences of traumatic brain injury and is a potential pharmacological target. Protein phosphatase 2A is a heterotrimeric protein that regulates key signalling pathways, and protein phosphatase 2A heterotrimers consisting of the PR55 B-subunit represent the major tau phosphatase in the brain. Here we investigated whether traumatic brain injury in rats and humans would induce changes in protein phosphatase 2A and phosphorylated tau, and whether treatment with sodium selenate-a potent PR55 activator-would reduce phosphorylated tau and improve traumatic brain injury outcomes in rats. Ninety young adult male Long-Evans rats were administered either a fluid percussion injury or sham-injury. A proportion of rats were killed at 2, 24, and 72 h post-injury to assess acute changes in protein phosphatase 2A and tau. Other rats were given either sodium selenate or saline-vehicle treatment that was continuously administered via subcutaneous osmotic pump for 12 weeks. Serial magnetic resonance imaging was acquired prior to, and at 1, 4, and 12 weeks post-injury to assess evolving structural brain damage and axonal injury. Behavioural impairments were assessed at 12 weeks post-injury. The results showed that traumatic brain injury in rats acutely reduced PR55 expression and protein phosphatase 2A activity, and increased the expression of phosphorylated tau and the ratio of phosphorylated tau to total tau. Similar findings were seen in post-mortem brain samples from acute human traumatic brain injury patients, although many did not reach statistical significance. Continuous sodium selenate treatment for 12 weeks after sham or fluid percussion injury in rats increased protein phosphatase 2A activity and PR55 expression, and reduced the ratio of phosphorylated tau to total tau, attenuated brain damage, and improved behavioural outcomes in rats given a fluid percussion injury. Notably, total tau levels were decreased in rats 12 weeks after fluid percussion injury, and several other factors, including the use of anaesthetic, the length of recovery time, and that some brain injury and behavioural dysfunction still occurred in rats treated with sodium selenate must be considered in the interpretation of this study. However, taken together these data suggest protein phosphatase 2A and hyperphosphorylated tau may be involved in the neurodegenerative cascade of traumatic brain injury, and support the potential use of sodium selenate as a novel traumatic brain injury therapy.
There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in neurodegenerative diseases commonly associated with epilepsy, such as Alzheimer's disease and traumatic brain injury. Here we used the protein phosphatase 2A activator sodium selenate to investigate the role of protein phosphatase 2A in three different rat models of epileptogenesis: amygdala kindling, post-kainic acid status epilepticus, and post-traumatic epilepsy. Protein phosphatase 2A activity was decreased, and tau phosphorylation increased, in epileptogenic brain regions in all three models. Continuous sodium selenate treatment mitigated epileptogenesis and prevented the biochemical abnormalities, effects which persisted after drug withdrawal. Our studies indicate that limbic epileptogenesis is associated with downregulation of protein phosphatase 2A and the hyperphosphorylation of tau, and that targeting this mechanism with sodium selenate is a potential anti-epileptogenic therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.