The vibrational eigenstates of methane-thiol (CH(3)SH) and methane-thiolate (CH(3)S) in the gas phase and in dense monolayers adsorbed on the (111) surfaces of the Ni-group metals have been investigated within the framework of density-functional theory using generalized response and force-constant techniques. For isolated CH(3)SH good agreement of eigenfrequencies and intensities with the measured infrared spectra is achieved. For the CH(3)S radical, experimental information from laser-induced fluorescence spectroscopy is available only for selected eigenmodes. The theoretical predictions show reasonable agreement for the C-H deformation and C-S stretching modes, but predict much higher C-H stretching frequencies in better agreement with estimates based on the vibrational fine structure of the photoemission spectra. For methane-thiol monolayers on Ni(111) and Pt(111) the calculations predict stronger red-shifts of the S-H and C-S stretching modes than reported from high-resolution electron energy loss spectroscopy (HREELS) on condensed multilayers which average over the first layer adsorbed on the metal and further physisorbed molecular layers. For methane-thiolate monolayers the calculations predict modest blue-shifts of the C-H stretching and rocking modes and for the asymmetric C-H deformation modes. Red-shifts are predicted for the symmetric C-H deformation and for the C-S stretching modes. Reasonable agreement with HREELS is achieved. The increased differences between symmetric and asymmetric C-H stretching and deformation modes induced by the adsorption is a consequence of the strongly tilted adsorption geometries.
Anionic uranyl-peroxide U(28) nanocapsules trap cations and other anions inside, whose structures cannot be resolved by X-ray diffraction, owing to crystallographic disorder. DFT calculations enabled the complete characterization of the geometry of these complex systems and also explained the origin of the disorder. The stability of the capsules was strongly influenced by the entrapped cations. Excellent agreement between experiment and theory was also obtained for the electronic character and redox properties.
The molecular and dissociative adsorption of methane-thiol (CH(3)SH) in the high-coverage limit on the (111) surfaces of the Ni-group metals has been investigated using ab initio density functional techniques. In molecular form, methane-thiol is bound to the surface only by weak polarization-induced forces in a slightly asymmetric configuration with the C-S axis tilted by 35-60° relative to the surface normal. On Ni and Pd surfaces the S atom occupies a position close to a bridge site; on Pt it is located close to an on-top position. The length of the S-H bond is only slightly stretched relative to its value in the gas phase, indicating only a very modest degree of activation for dehydrogenation. A strong covalent adsorbate/substrate bond is formed upon adsorption of a methane-thiolate (CH(3)S) radical. On Ni(111) in the energetically most favorable configuration the S atom occupies a position in a threefold hollow, slightly displaced towards a bridge site. The C-S axis is tilted by about 35° across the bridge. On Pd(111) and Pt(111) the S atom of thiolate occupies a position between a hollow and a bridge site, with the C-S axis tilted even more strongly across a neighboring threefold hollow. On all three surfaces our calculations demonstrate the existence of multiple metastable adsorption configurations, including upright CH(3)S bound in the center of a threefold hollow as reported in some earlier studies. Dehydrogenation of the adsorbed methane-thiol to form co-adsorbed methane-thiolate and atomic hydrogen is an exothermic process, which is not activated on Ni(111) but activated on Pd(111) and Pt(111).
Partial hydrogenation of unsaturated hydrocarbons comprises an important family of reactions that are applied in many industrial sectors. Understanding the hydrogenation of polyunsatured and polyunsaturated compounds on heterogeneous catalysts at its molecular level remains a challenging milestone to fine‐tune the product distribution. Our study presents a detailed mechanistic analysis of the gas phase hydrogenation of vinylacetylene (1‐butene‐3‐yne) and valylene (2‐methyl‐1‐butene‐3‐yne) over palladium and copper catalysts. These two metals are selected owing to their pronounced differences in continuous flow catalytic tests at ambient pressure. The chemoselectivity, regioselectivity, isomerization, and oligomerization patterns measured in a broad range of feed hydrogen/hydrocarbon ratios are rationalized by density functional theory simulations. An extended Brønsted–Evans–Polanyi relationship for both substrates and active metals is found for the hydrogenation processes. The identified factors that govern selectivity are similar to those identified for smaller C2 and C3 compounds and, thus, a means of systematization to other polyunsaturated compounds is opened up.
Theoretical investigation of Pt(0)-olefin organometallic complexes containing tertiary phosphine ligands was focused on the strength of platinum-olefin electronic interaction. DFT theoretical study of electronic effects in a substantial number of ethylene derivatives was evaluated in terms of the Pt-olefin binding energy using MP2 correlation theory. Organometallics bearing coordinated olefins with general formula (R1R2C = CR3R4)Pt(PH3)2 [R = various substituents] had been selected, including olefins containing both electron-donor substituents as well as electron-withdrawing groups. The stability of the corresponding complexes increases with a strengthening electron-withdrawal ability of the olefin substituents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.