Chylous ascites (CA) is a rare form of ascites that results from the leakage of lipid-rich lymph into the peritoneal cavity. This usually occurs due to trauma and rupture of the lymphatics or increased peritoneal lymphatic pressure secondary to obstruction. The underlying etiologies for CA have been classified as traumatic, congenital, infectious, neoplastic, postoperative, cirrhotic or cardiogenic. Since malignancy and cirrhosis account for about two-thirds of all the cases of CA in Western countries, in this article we have attempted to reclassify CA based on portal and non-portal etiologies. The diagnosis of CA is based on the distinct characteristic of the ascitic fluid which includes a milky appearance and a triglyceride level of >200 mg/dL. The management consists of identifying and treating the underlying disease process, dietary modification, and diuretics. Some studies have also supported the use of agents such as orlistat, somatostatin, octreotide and etilefrine. Paracentesis and surgical interventions in the form of transjugular intrahepatic portosystemic shunt (commonly known as TIPS), peritoneal shunt, angiography with embolization of a leaking vessel, and laparotomy remain as treatment options for cases refractory to medical management.
We recently have identified CD91 as a receptor for the heat shock protein gp96. CD91 was identified initially as a receptor for α2-macroglobulin (α2M). Gp96 and α2M are both ligands for CD91. Because gp96-chaperoned peptides can prime CD8+ T cell responses and are re-presented by APCs, we tested α2M for similar properties. Our studies show that α2M binds peptides in vitro and that the peptides, chaperoned by α2M, efficiently prime peptide-specific CD8+ T cell responses in mice immunized with α2M-peptide complexes. Furthermore, peptides chaperoned by α2M, like those chaperoned by gp96, can be re-presented by CD91+ APCs on their MHC I molecules. These studies demonstrate that α2M molecules, like the heat shock protein molecules, are T cell adjuvants that can channel exogenous Ags into the endogenous pathway of Ag presentaion. The remarkable similarities between an intracellular chaperone and an extracellular serum chaperone may have interesting physiological ramifications.
Objectives Gadolinium deposition is widely believed to occur, but questions regarding accumulation pattern and permanence remain. We conducted a retrospective study of intracranial signal changes on monthly triple-dose contrast-enhanced magnetic resonance imaging (MRI) examinations from the previously published Betaseron vs. Copaxone in Multiple Sclerosis With Triple-Dose Gadolinium and 3-Tesla MRI Endpoints Trial (N = 67) to characterize the dynamics of gadolinium deposition in several deep brain nuclei and track persistence versus washout of gadolinium deposition on long-term follow-up (LTFU) examinations (N = 28) obtained approximately 10 years after enrollment in the Betaseron vs. Copaxone in Multiple Sclerosis With Triple-Dose Gadolinium and 3-Tesla MRI Endpoints Trial. Materials and Methods Using T2 and proton density images and using image analysis software (ITK-SNAP), manual regions of interest were created ascribing boundaries of the caudate nucleus, dentate nucleus, globus pallidus, pulvinar, putamen, white matter, and air. Intensity analysis was conducted on T1-weighted fat-saturated (fat-sat) images using the FSL package. A linear rigid-body transform was calculated from the fat-sat image at each target time point to the region of interest segmentation reference time point fat-sat image. Serial MRI signal was analyzed using linear mixed regression modeling with random intercept. Annual MRI signal changes including LTFU scans were assessed with t test. Results During monthly scanning, all gray matter structures demonstrated a significant (P < 0.0001) increase in contrast-to-noise ratio. Yearly changes in deposition showed distinctive patterns for the specific nucleus: globus pallidus showed complete retention, pulvinar showed partial washout, while dentate, caudate, and putamen returned to baseline (ie, complete washout). Conclusions Monthly increased contrast-to-noise ratio in gray matter nuclei is consistent with gadolinium deposition over time. The study also suggests that some deep gray matter nuclei permanently retain gadolinium, whereas others demonstrate washout of soluble gadolinium.
First-line mFOLFOX6 with bevacizumab for metastatic gastroesophageal adenocarcinoma was well tolerated and associated with longer PFS and OS compared with historical data from similar populations treated without bevacizumab. Our results suggest that the addition of bevacizumab to mFOLFOX6 may provide clinical benefit in American patients with metastatic gastroesophageal adenocarcinoma, a finding consistent with previous studies of first-line bevacizumab in combination with chemotherapy for this disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.