The phylogeny of the insect infraorder Bibionomorpha (Diptera) is reconstructed based on the combined analysis of three nuclear (18S, 28S, CAD) and three mitochondrial (12S, 16S, COI) gene markers. All the analyses strongly support the monophyly of Bibionomorpha in both the narrow (sensu stricto) and the broader (sensu lato) concepts. The major lineages of Bibionomorpha sensu lato (Sciaroidea, Bibionoidea, Anisopodoidea, and Scatopsoidea) and most of the included families are supported as monophyletic groups. Axymyiidae was not found to be part of Bibionomorpha nor was it found to be its sister group. Bibionidae was paraphyletic with respect to Hesperinidae and Keroplatidae was paraphyletic with respect to Lygistorrhinidae. The included Sciaroidea incertae sedis (except Ohakunea Edwards) were found to belong to one clade, but the relationships within this group and its position within Sciaroidea require further study.
The phylogeny of the fungus gnat family Mycetophilidae (Diptera) is reconstructed with a focus on the species-rich and taxonomically difficult subfamilies Gnoristinae and Mycomyinae. The multigene phylogenetic analyses are based on five nuclear (18S, 28S, CAD, MCS, ITS2) and four mitochondrial (12S, 16S, COI, CytB) gene markers. The analyses strongly support the monophyly of Mycetophilidae and the subfamilies Manotinae, Sciophilinae, Leiinae, and Mycomyinae, although Gnoristinae is paraphyletic with respect to Mycetophilinae. All the genera and groups of genera included are supported as monophyletic, except for Acomoptera Vockeroth, Boletina Staeger, Dziedzickia Johannsen, Ectrepesthoneura Enderlein, and Neoempheria Osten Sacken. Ancestral character state reconstructions were applied to two morphological features present in Gnoristinae and Mycomyinae (i.e. presence of setae on wing membrane and wing vein R 4 ) in order to assess their evolution. The wing vein R 4 appears as an unstable character, spread throughout different clades. A dated phylogeny of the family Mycetophilidae showed that most of the subfamilies of Mycetophilidae originated and diversified during the Cretaceous. The youngest subfamilies, originated in the Paleogene, appear to be Mycomyinae and Mycetophilinae.
The phylogeny of selected genera from four subfamilies of fungus gnats (Diptera: Mycetophilidae) – Manotinae, Leiinae, Sciophilinae and Gnoristinae (including Metanepsiini) – is reconstructed based on the combined analysis of five mitochondrial (12S, 16S, COI, COII, cytB) and two nuclear (28S, ITS2) gene markers. Results of the different analyses all support Manotinae as a monophyletic group, with Leiinae as the sister group. Allactoneura DeMeijere is nested in the monophyletic and strongly supported clade of Leiinae. The tribe Metanepsiini is revealed as paraphyletic and the genera Metanepsia Edwards and Chalastonepsia Søli do not appear to be closely related. The genera Docosia Winnertz, Ectrepesthoneura Enderlein, Novakia Strobl and Syntemna Winnertz were placed with a group of genera included traditionally in the Gnoristinae. The monophyly of Dziedzickia Johannsen and Phthinia Winnertz is not supported. The genera of Sciophilinae (excluding Paratinia Mik but including Eudicrana Loew) form a monophyletic group in the Bayesian model.
The phylogeny of the fungus gnat tribe Exechiini (Diptera: Mycetophilidae) is reconstructed based on the combined analysis of five nuclear (18S, two parts of 28S, CAD, EF1α) and two mitochondrial (12S, COI) gene markers. According to known fossil record, and recent higher‐level phylogenies, the tribe constitutes the most apomorphic, distinctly monophyletic clade of the family Mycetophilidae. The tribe originated in the Paleogene and apparently quickly diversified in the Neogene with an unusual rapid radiation of complex male terminalia. Earlier attempts to reconstruct the phylogeny of the tribe, based on both morphology and molecular methods, have not yielded reliable hypotheses, neither in terms of resolution nor in terms of support for major clades. Increased taxon sampling and wider gene sampling have been suggested to achieve better phylogenetic resolution. Aiming at this, we present new phylogenies, for the first time with all known genera and subgenera of Exechiini represented. While many terminal intergeneric relationships are well supported, both in maximum likelihood and in Bayesian analyses, most of the major, deeper clades remain poorly supported. We suggest that a rapid radiation event close to the root may be causing the low resolution at this level in the phylogeny. This contrasts parallel phylogenies of the older subfamilies and tribes of the family Mycetophilidae, where traditional clades have usually been recovered with high support. Further in‐depth studies into the evolutionary history of the tribe are needed to enlighten and coalesce the specific phenomena driving their unique morphological, genetic and phylogeographic histories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.