Background: Chemical intolerance (CI) is characterized by multisystem symptoms triggered by low levels of exposure to xenobiotics including chemicals, foods/food additives, and drugs/medications. Prior prevalence estimates vary from 8–33% worldwide. Clinicians and researchers need a brief, practical screening tool for identifying possible chemical intolerance. This large, population-based study describes the validation of a three-item screening questionnaire, the Brief Environmental Exposure and Sensitivity Inventory (BREESI), against the international reference standard used for assessing chemical intolerance, the Quick Environmental Exposure and Sensitivity Inventory (QEESI). Methods: More than 10,000 people in the U.S. responded to the BREESI and the QEESI in a population-based survey. We calculated the overall prevalence of CI in this sample, as well as by gender, age, and income. Common statistical metrics were used to evaluate the BREESI as a screener for CI against the QEESI. Results: The prevalence estimate for QEESI-defined chemical intolerance in the U.S. was 20.39% (95% CI 19.63%–21.15%). The BREESI had 91.26% sensitivity (95% CI: 89.20%–93.04%) and 92.89% specificity (95% CI: 91.77%–93.90%). The positive likelihood ratio was 12.83 (95% CI: 11.07–14.88), and the negative likelihood ratio was 0.09 (95% CI: 0.08–0.12). Logistic regression demonstrates that the predicted probability of CI increased sharply with each increase in the number of BREESI items endorsed (Odds Ratio: 5.3, 95% CI: 4.90–5.75). Conclusions: Chemical intolerance may affect one in five people in the U.S. The BREESI is a new, practical instrument for researchers, clinicians, and epidemiologists. As a screening tool, the BREESI offers a high degree of confidence in case ascertainment. We recommend: screen with the BREESI, confirm with the QEESI.
Keywords: Chemical Intolerance, Drug Intolerance, Food Intolerance, QEESI, BREESI, Multiple Chemical Sensitivity, Toxicant-induced Loss of Tolerance, Prevalence
Background Worldwide observations point to a two-stage theory of disease called Toxicant-Induced Loss of Tolerance (TILT): Stage I, Initiation by an acute high-level or repeated lower-level chemical exposures, followed by Stage II, Triggering of multisystem symptoms by previously tolerated, structurally diverse chemical inhalants, foods/food additives and drugs. Until recently, there was no known biological mechanism that could explain these observations. In 2021 we published a plausible and researchable two-stage biomechanism for TILT involving mast cells: Stage I, Initiation via mast cell sensitization; Stage II, Triggering of mast cell degranulation by previously tolerated exposures, resulting in the release of thousands of mediators, including histamine and a host of inflammatory molecules. The objective of this study was to identify common TILT initiators. Methods A randomized, population-based sample of 10,981 U.S. adults responded to a survey which included items concerning medical diagnoses, personal exposures, antibiotic use, and several possible initiators of Chemical Intolerance (CI). CI was assessed using the internationally validated Quick Environmental Exposure and Sensitivity Inventory (QEESI). Participants identified as chemically intolerant were asked to recall when their intolerances began and what they felt had initiated their condition. Results Twenty percent met QEESI criteria for TILT, approximately half of whom identified one or more initiating exposures. Initiators in order of frequency were mold (15.6%), pesticides (11.5%), remodeling/new construction (10.7%), medical/surgical procedures (11.3%), fires/combustion products (6.4%), and implants (1.6%). Protracted antibiotic use for infections involving the prostate, skin, tonsils, gastrointestinal tract, and sinuses were strongly associated with TILT/CI (OR > 2). Discussion Participants identified two broad classes of TILT initiators: 1) fossil fuel-derived toxicants (i.e., from coal, oil, natural gas), their combustion products, and/or synthetic organic chemical derivatives, e.g., pesticides, implants, drugs/antibiotics, volatile organic compounds (VOCs), and 2) biogenic toxicants, e.g., particles and VOCs from mold or algal blooms. One in four primary care patients suffers from Medically Unexplained Symptoms (MUS). Doctors in primary care, neurology, psychiatry, psychology, occupational medicine, and allergy/immunology would be well-advised to include TILT in their differential diagnosis of patients with so-called MUS. Because 20% of U.S. adults meet QEESI criteria for CI, the role of contemporary exposures in initiating and exacerbating these conditions via mast cells needs our immediate attention. There is a concomitant need for policies and practices that reduce initiating exposures as well as ubiquitous and often unavoidable triggers such as fragranced personal care, cleaning, and laundry products in multi-occupant housing, workplaces, medical settings, schools, places of worship, and all public buildings—literally anywhere air is shared. Fossil fuels are assaulting humans and other animal species both from withinvia mast cell sensitization, and from without via climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.