Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on * Address for correspondence (E-mail: ttschar@gwdg.de).Biological Reviews 87 (2012) 661-685 © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society 662 Teja Tscharntke and others the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscapemoderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscapemoderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management.
Summary 1.Increasing concern over the environmental impact of agriculture in Europe has led to the introduction of agri-environment schemes. These schemes compensate farmers financially for any loss of income associated with measures that aim to benefit the environment or biodiversity. There are currently agri-environment schemes in 26 out of 44 European countries. 2. Agri-environment schemes vary markedly between countries even within the European Union. The main objectives include reducing nutrient and pesticide emissions, protecting biodiversity, restoring landscapes and preventing rural depopulation. In virtually all countries the uptake of schemes is highest in areas of extensive agriculture where biodiversity is still relatively high and lowest in intensively farmed areas where biodiversity is low. 3. Approximately $ 24·3 billion has been spent on agri-environment schemes in the European Union (EU) since 1994, an unknown proportion of it on schemes with biodiversity conservation aims. We carried out a comprehensive search for studies that test the effectiveness of agri-environment schemes in published papers or reports. Only 62 evaluation studies were found originating from just five EU countries and Switzerland (5). Indeed 76% of the studies were from the Netherlands and the United Kingdom, where until now only c . 6% of the EU agri-environmental budget has been spent. Other studies were from Germany (6), Ireland (3) and Portugal (1). 4. In the majority of studies, the research design was inadequate to assess reliably the effectiveness of the schemes. Thirty-one percent did not contain a statistical analysis. Where an experimental approach was used, designs were usually weak and biased towards giving a favourable result. The commonest experimental design (37% of the studies) was a comparison of biodiversity in agri-environment schemes and control areas. However, there is a risk of bias if either farmers or scheme co-ordinators select the sites for agri-environment schemes. In such cases the sites are likely to have a higher biodiversity at the outset compared to the controls. This problem may be addressed by collecting baseline data (34% of studies), comparing trends (32%) or changes (26%) in biodiversity between areas with and without schemes or by pairing scheme and control sites that experience similar environmental conditions (16%). 5. Overall, 54% of the examined species (groups) demonstrated increases and 6% decreases in species richness or abundance compared with controls. Seventeen percent showed increases for some species and decreases for other species, while 23% showed no change at all in response to agri-environment schemes. The response varied between taxa. Of 19 studies examining the response of birds that included a statistical analysis, four showed significant increases in species richness or abundance, two showed decreases and nine showed both increases and decreases. Comparative figures for 20 arthropod studies yielded 11 studies that showed an increase in species richness or abundance, ...
There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.