Regional changes occur in the sympathetic innervation of the heart after myocardial infarction (MI), including loss of norepinephrine (NE) uptake and depletion of neuronal NE. This apparent denervation is accompanied by increased cardiac NE spillover. One potential explanation for these apparently contradictory findings is that the sympathetic neurons innervating the heart are exposed to environmental stimuli that alter neuronal function. To understand the changes that occur in the innervation of the heart after MI, immunohistochemical, biochemical, and molecular analyses were carried out in the heart and stellate ganglia of control and MI rats. Immunohistochemistry with panneuronal markers revealed extensive denervation in the left ventricle (LV) below the infarct, but sympathetic nerve fibers were retained in the base of the heart. Western blot analysis revealed that tyrosine hydroxylase (TH) expression (normalized to a panneuronal marker) was increased significantly in the base of the heart and in the stellate ganglia but decreased in the LV below the MI. NE transporter (NET) binding sites, normalized to total protein, were unchanged, except in the LV, where [3 H]nisoxetine binding was decreased. TH mRNA was increased significantly in the left and right stellate ganglia after MI, while NET mRNA was not. In the base of the heart, increased TH coupled with no change in NET may explain the increase in extracellular NE observed after MI. Coupled with substantial denervation in the LV, these changes likely contribute to the onset of cardiac arrhythmias. tyrosine hydroxylase; norepinephrine transporter; myocardial infarction THE CARDIAC SYMPATHETIC INNERVATION travels from the base to the apex of the heart, and cardiac sympathetic function is altered in a region-specific manner after myocardial infarction (MI). Noradrenergic transmission is retained in the heart basal to the coronary ligature (4, 17), but 90 min after the loss of blood flow, transmission is decreased or absent in the infarct zone and in noninfarcted myocardium apical to the occlusion (4, 17, 18). These changes include the loss of nerve-stimulated effective refractory period shortening (4, 17) and denervation supersensitivity apical to the infarction (18). Decreased cardiac (4,16,22) and increased interstitial (1, 19) and plasma (22, 24) norepinephrine (NE) are also observed acutely after infarction due primarily to efflux of NE through the NE transporter (NET) (33).Loss of noradrenergic function in the infarct zone and in peri-infarct myocardium is retained for weeks or months after infarction. This is revealed by decreased accumulation of metaiodobenzylguanidine (9, 10, 14, 23) and NE (22), the absence of effective refractory period shortening on nerve stimulation (4), and the loss of catecholamine-containing nerve fibers in the left ventricle (LV) apical to the infarction (4). The loss of noradrenergic function, coupled with the absence of catecholamine-containing nerve fibers, is thought to be due to denervation of the infarct and peri-infarct z...
Although the sympathetic neurons innervating the heart are exposed to the inflammatory cytokines cardiotrophin-1 (CT-1), interleukin-6 (IL-6) and tumor necrosis factor alpha (TNFa) after myocardial infarction, the effects of these cytokines on noradrenergic function are not well understood. We used cultured sympathetic neurons to investigate the effects of these cytokines on catecholamine content, the tyrosine hydroxylase co-factor, tetrahydrobiopterin (BH4), and norepinephrine (NE) uptake. CT-1, but not IL-6 or TNFa, suppressed NE uptake and catecholamines in these neurons, whereas CT-1 and, to a lesser extent, IL-6 decreased BH4 content. CT-1 exerted these effects by decreasing tyrosine hydroxylase, GTP cyclohydrolase (GCH) and NE transporter mRNAs, while IL-6 lowered only GCH mRNA. The neurons innervating the heart are also activated by the central nervous system after myocardial infarction. We examined the combined effect of depolarization and cytokines on noradrenergic function. In CT-1-treated cells, depolarization caused a small increase in BH4 and NE uptake, and a large increase in catecholamines. These changes were accompanied by increased TH, GCH and NE transporter mRNAs. CT-1 and depolarization regulate expression of noradrenergic properties in an opposing manner, and the combined treatment results in elevated cellular catecholamines and decreased NE uptake relative to control cells.
Purpose: The development of novel biomarkers is an unmet need in chronic obstructive pulmonary disease (COPD). Arterial blood comes directly from the lung and venous blood drains capillary beds of the organ or tissue supplied. We hypothesized that there would be a difference in levels of the biomarkers metalloproteinase 9 (MMP-9), vascular endothelial growth factor A (VEGF-A) and interleukin 6 (IL-6) in arterial compared with venous blood. Methods: Radial artery and brachial vein blood samples were taken simultaneously in each of 12 patients with COPD and seven controls with normal lung function. Circulating immunoreactive MMP-9, VEGF-A and IL-6 levels in serum were measured using quantitative enzyme-linked immunosorbent assays. Results were compared using a Student’s paired t test. The study was powered to determine whether significant differences in cytokine levels were present between paired arterial and venous blood samples. Results: In the 12 patients with COPD, four were female, and age ranged 53-85 years, mean age 69 years. Three patients in the control group were female, with age range 46-84 years, mean age 64.7 years. In the COPD group, three patients had mild, five moderate and four severe COPD. No significant difference was found between arterial and venous levels of MMP-9, VEGF-A or IL-6. Conclusions: In this pilot study, levels of the measured biomarkers in arterial compared with venous blood in both COPD patients and healthy controls did not differ. This suggests that as we continue to chase the elusive biomarker in COPD as a potential tool to measure disease activity, we should focus on venous blood for this purpose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.