Industry is increasingly turning to reconfigurable architectures like FPGAs and CGRAs for improved performance and energy efficiency. Unfortunately, adoption of these architectures has been limited by their programming models. HDLs lack abstractions for productivity and are difficult to target from higher level languages. HLS tools are more productive, but offer an ad-hoc mix of software and hardware abstractions which make performance optimizations difficult. In this work, we describe a new domain-specific language and compiler called Spatial for higher level descriptions of application accelerators. We describe Spatial's hardwarecentric abstractions for both programmer productivity and design performance, and summarize the compiler passes required to support these abstractions, including pipeline scheduling, automatic memory banking, and automated design tuning driven by active machine learning. We demonstrate the language's ability to target FPGAs and CGRAs from common source code. We show that applications written in Spatial are, on average, 42% shorter and achieve a mean speedup of 2.9× over SDAccel HLS when targeting a Xilinx UltraScale+ VU9P FPGA on an Amazon EC2 F1 instance.
Multi-objective optimization is a crucial matter in computer systems design space exploration because real-world applications often rely on a trade-off between several objectives. Derivatives are usually not available or impractical to compute and the feasibility of an experiment can not always be determined in advance. These problems are particularly difficult when the feasible region is relatively small, and it may be prohibitive to even find a feasible experiment, let alone an optimal one.We introduce a new methodology and corresponding software framework, HyperMapper 2.0, which handles multi-objective optimization, unknown feasibility constraints, and categorical/ordinal variables. This new methodology also supports injection of the user prior knowledge in the search when available. All of these features are common requirements in computer systems but rarely exposed in existing design space exploration systems. The proposed methodology follows a white-box model which is simple to understand and interpret (unlike, for example, neural networks) and can be used by the user to better understand the results of the automatic search.We apply and evaluate the new methodology to the automatic static tuning of hardware accelerators within the recently introduced Spatial programming language, with minimization of design run-time and compute logic under the constraint of the design fitting in a target field-programmable gate array chip. Our results show that HyperMapper 2.0 provides better Pareto fronts compared to state-of-the-art baselines, with better or competitive hypervolume indicator and with 8x improvement in sampling budget for most of the benchmarks explored.
Acceleration in the form of customized datapaths offer large performance and energy improvements over general purpose processors. Reconfigurable fabrics such as FPGAs are gaining popularity for use in implementing application-specific accelerators, thereby increasing the importance of having good high-level FPGA design tools. However, current tools for targeting FPGAs offer inadequate support for high-level programming, resource estimation, and rapid and automatic design space exploration. We describe a design framework that addresses these challenges. We introduce a new representation of hardware using parameterized templates that captures locality and parallelism information at multiple levels of nesting. This representation is designed to be automatically generated from high-level languages based on parallel patterns. We describe a hybrid area estimation technique which uses template-level models and design-level artificial neural networks to account for effects from hardware place-and-route tools, including routing overheads, register and block RAM duplication, and LUT packing. Our runtime estimation accounts for off-chip memory accesses. We use our estimation capabilities to rapidly explore a large space of designs across tile sizes, parallelization factors, and optional coarse-grained pipelining, all at multiple loop levels. We show that estimates average 4.8% error for logic resources, 6.1% error for runtimes, and are 279 to 6533 times faster than a commercial high-level synthesis tool. We compare the best-performing designs to optimized CPU code running on a server-grade 6 core processor and show speedups of up to 16.7×.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.