Artificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthroughs in the development of AI applications. In the last 5 years, AI techniques known as deep learning have delivered rapidly improving performance in image recognition, caption generation, and speech recognition. Radiology, in particular, is a prime candidate for early adoption of these techniques. It is anticipated that the implementation of AI in radiology over the next decade will significantly improve the quality, value, and depth of radiology's contribution to patient care and population health, and will revolutionize radiologists' workflows. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI working group with the mandate to discuss and deliberate on practice, policy, and patient care issues related to the introduction and implementation of AI in imaging. This white paper provides recommendations for the CAR derived from deliberations between members of the AI working group. This white paper on AI in radiology will inform CAR members and policymakers on key terminology, educational needs of members, research and development, partnerships, potential clinical applications, implementation, structure and governance, role of radiologists, and potential impact of AI on radiology in Canada.
Weight loss leading to cachexia is associated with poor treatment response and reduced survival in pancreatic cancer patients. We aim to identify indicators that allow for early detection that will advance our understanding of cachexia and will support targeted anti-cachexia therapies. A total of fifty pancreatic cancer patients were analysed for skeletal muscle and visceral adipose tissue (VAT) changes using computed tomography (CT) scans. These changes were related to physical characteristics, secondary disease states and treatment parameters. Overall, patients lost 1·72 (SD 3·29) kg of muscle and 1·04 (SD 1·08) kg of VAT during the disease trajectory (413 (SD 213) d). After sorting patients into tertiles by rate of VAT and muscle loss, patients losing VAT at .20·40 kg/100 d had poorer survival outcomes compared with patients with ,20·10 kg/100 d of VAT loss (P¼0·020). Patients presenting with diabetes at diagnosis demonstrated significantly more and accelerated VAT loss compared with non-diabetic patients. In contrast, patients who were anaemic at the first CT scan lost significantly more muscle tissue and at accelerated rates compared with non-anaemic patients. Accelerated rates of VAT loss are associated with reduced survival. Identifying associated features of cachexia, such as diabetes and anaemia, is essential for the early detection of cachexia and may facilitate the attenuation of complications associated with cachexia.
BackgroundUnderuse and overuse of diagnostic tests have important implications for health outcomes and costs. Decision support technology purports to optimize the use of diagnostic tests in clinical practice. The objective of this review was to assess whether computerized clinical decision support systems (CCDSSs) are effective at improving ordering of tests for diagnosis, monitoring of disease, or monitoring of treatment. The outcome of interest was effect on the diagnostic test-ordering behavior of practitioners.MethodsWe conducted a decision-maker-researcher partnership systematic review. We searched MEDLINE, EMBASE, Ovid's EBM Reviews database, Inspec, and reference lists for eligible articles published up to January 2010. We included randomized controlled trials comparing the use of CCDSSs to usual practice or non-CCDSS controls in clinical care settings. Trials were eligible if at least one component of the CCDSS gave suggestions for ordering or performing a diagnostic procedure. We considered studies 'positive' if they showed a statistically significant improvement in at least 50% of test ordering outcomes.ResultsThirty-five studies were identified, with significantly higher methodological quality in those published after the year 2000 (p = 0.002). Thirty-three trials reported evaluable data on diagnostic test ordering, and 55% (18/33) of CCDSSs improved testing behavior overall, including 83% (5/6) for diagnosis, 63% (5/8) for treatment monitoring, 35% (6/17) for disease monitoring, and 100% (3/3) for other purposes. Four of the systems explicitly attempted to reduce test ordering rates and all succeeded. Factors of particular interest to decision makers include costs, user satisfaction, and impact on workflow but were rarely investigated or reported.ConclusionsSome CCDSSs can modify practitioner test-ordering behavior. To better inform development and implementation efforts, studies should describe in more detail potentially important factors such as system design, user interface, local context, implementation strategy, and evaluate impact on user satisfaction and workflow, costs, and unintended consequences.
Background The coronavirus disease 2019 (COVID-19) pandemic led to far-reaching restrictions of social and professional life, affecting societies all over the world. To contain the virus, medical schools had to restructure their curriculum by switching to online learning. However, only few medical schools had implemented such novel learning concepts. We aimed to evaluate students’ attitudes to online learning to provide a broad scientific basis to guide future development of medical education. Methods Overall, 3286 medical students from 12 different countries participated in this cross-sectional, web-based study investigating various aspects of online learning in medical education. On a 7-point Likert scale, participants rated the online learning situation during the pandemic at their medical schools, technical and social aspects, and the current and future role of online learning in medical education. Results The majority of medical schools managed the rapid switch to online learning (78%) and most students were satisfied with the quantity (67%) and quality (62%) of the courses. Online learning provided greater flexibility (84%) and led to unchanged or even higher attendance of courses (70%). Possible downsides included motivational problems (42%), insufficient possibilities for interaction with fellow students (67%) and thus the risk of social isolation (64%). The vast majority felt comfortable using the software solutions (80%). Most were convinced that medical education lags behind current capabilities regarding online learning (78%) and estimated the proportion of online learning before the pandemic at only 14%. In order to improve the current curriculum, they wish for a more balanced ratio with at least 40% of online teaching compared to on-site teaching. Conclusion This study demonstrates the positive attitude of medical students towards online learning. Furthermore, it reveals a considerable discrepancy between what students demand and what the curriculum offers. Thus, the COVID-19 pandemic might be the long-awaited catalyst for a new “online era” in medical education.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.