Artificial intelligence (AI) is rapidly moving from an experimental phase to an implementation phase in many fields, including medicine. The combination of improved availability of large datasets, increasing computing power, and advances in learning algorithms has created major performance breakthroughs in the development of AI applications. In the last 5 years, AI techniques known as deep learning have delivered rapidly improving performance in image recognition, caption generation, and speech recognition. Radiology, in particular, is a prime candidate for early adoption of these techniques. It is anticipated that the implementation of AI in radiology over the next decade will significantly improve the quality, value, and depth of radiology's contribution to patient care and population health, and will revolutionize radiologists' workflows. The Canadian Association of Radiologists (CAR) is the national voice of radiology committed to promoting the highest standards in patient-centered imaging, lifelong learning, and research. The CAR has created an AI working group with the mandate to discuss and deliberate on practice, policy, and patient care issues related to the introduction and implementation of AI in imaging. This white paper provides recommendations for the CAR derived from deliberations between members of the AI working group. This white paper on AI in radiology will inform CAR members and policymakers on key terminology, educational needs of members, research and development, partnerships, potential clinical applications, implementation, structure and governance, role of radiologists, and potential impact of AI on radiology in Canada.
We propose a novel segmentation approach based on deep 3D convolutional encoder networks with shortcut connections and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that consists of two interconnected pathways, a convolutional pathway, which learns increasingly more abstract and higher-level image features, and a deconvolutional pathway, which predicts the final segmentation at the voxel level. The joint training of the feature extraction and prediction pathways allows for the automatic learning of features at different scales that are optimized for accuracy for any given combination of image types and segmentation task. In addition, shortcut connections between the two pathways allow high- and low-level features to be integrated, which enables the segmentation of lesions across a wide range of sizes. We have evaluated our method on two publicly available data sets (MICCAI 2008 and ISBI 2015 challenges) with the results showing that our method performs comparably to the top-ranked state-of-the-art methods, even when only relatively small data sets are available for training. In addition, we have compared our method with five freely available and widely used MS lesion segmentation methods (EMS, LST-LPA, LST-LGA, Lesion-TOADS, and SLS) on a large data set from an MS clinical trial. The results show that our method consistently outperforms these other methods across a wide range of lesion sizes.
BackgroundMaintaining cognitive function is essential for healthy aging and to function autonomously within society. White matter lesions (WMLs) are associated with reduced cognitive function in older adults. However, whether their anatomical location moderates these associations is not well-established. This review systematically evaluates peer-reviewed evidence on the role of anatomical location in the association between WMLs and cognitive function.MethodsIn accordance with the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement, databases of EMBASE, PUBMED, MEDLINE, and CINAHL, and reference lists of selected papers were searched. We limited our search results to adults aged 60 years and older, and studies published in the English language from 2000 to 2011. Studies that investigated the association between cognitive function and WML location were included. Two independent reviewers extracted: 1) study characteristics including sample size, sample characteristic, and study design; 2) WML outcomes including WML location, WML quantification method (scoring or volume measurement), strength of the MRI magnet in Tesla, and MRI sequence used for WML detection; and 3) cognitive function outcomes including cognitive tests for two cognitive domains of memory and executive function/processing speed.ResultsOf the 14 studies included, seven compared the association of subcortical versus periventricular WMLs with cognitive function. Seven other studies investigated the association between WMLs in specific brain regions (e.g., frontal, parietal lobes) and cognitive function. Overall, the results show that a greater number of studies have found an association between periventricular WMLs and executive function/processing speed, than subcortical WMLs. However, whether WMLs in different brain regions have a differential effect on cognitive function remains unclear.ConclusionsEvidence suggests that periventricular WMLs may have a significant negative impact on cognitive abilities of older adults. This finding may be influenced by study heterogeneity in: 1) MRI sequences, WML quantification methods, and neuropsychological batteries; 2) modifying effect of cardiovascular risk factors; and 3) quality of studies and lack of sample size calculation.
An important image processing step in spinal cord magnetic resonance imaging is the ability to reliably and accurately segment grey and white matter for tissue specific analysis. There are several semi- or fully-automated segmentation methods for cervical cord cross-sectional area measurement with an excellent performance close or equal to the manual segmentation. However, grey matter segmentation is still challenging due to small cross-sectional size and shape, and active research is being conducted by several groups around the world in this field. Therefore a grey matter spinal cord segmentation challenge was organised to test different capabilities of various methods using the same multi-centre and multi-vendor dataset acquired with distinct 3D gradient-echo sequences. This challenge aimed to characterize the state-of-the-art in the field as well as identifying new opportunities for future improvements. Six different spinal cord grey matter segmentation methods developed independently by various research groups across the world and their performance were compared to manual segmentation outcomes, the present gold-standard. All algorithms provided good overall results for detecting the grey matter butterfly, albeit with variable performance in certain quality-of-segmentation metrics. The data have been made publicly available and the challenge web site remains open to new submissions. No modifications were introduced to any of the presented methods as a result of this challenge for the purposes of this publication.
Abstract. We propose a novel segmentation approach based on deep convolutional encoder networks and apply it to the segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. Our model is a neural network that has both convolutional and deconvolutional layers, and combines feature extraction and segmentation prediction in a single model. The joint training of the feature extraction and prediction layers allows the model to automatically learn features that are optimized for accuracy for any given combination of image types. In contrast to existing automatic feature learning approaches, which are typically patch-based, our model learns features from entire images, which eliminates patch selection and redundant calculations at the overlap of neighboring patches and thereby speeds up the training. Our network also uses a novel objective function that works well for segmenting underrepresented classes, such as MS lesions. We have evaluated our method on the publicly available labeled cases from the MS lesion segmentation challenge 2008 data set, showing that our method performs comparably to the state-of-theart. In addition, we have evaluated our method on the images of 500 subjects from an MS clinical trial and varied the number of training samples from 5 to 250 to show that the segmentation performance can be greatly improved by having a representative data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.