Let O be a maximal order in a definite quaternion algebra over Q of prime discriminant p, and a small prime. We describe a probabilistic algorithm which, for a given left O-ideal, computes a representative in its left ideal class of -power norm. In practice the algorithm is efficient and, subject to heuristics on expected distributions of primes, runs in expected polynomial time. This solves the underlying problem for a quaternion analog of the Charles-Goren-Lauter hash function, and has security implications for the original CGL construction in terms of supersingular elliptic curves.
We introduce a category of 𝓞-oriented supersingular elliptic curves and derive properties of the associated oriented and nonoriented ℓ-isogeny supersingular isogeny graphs. As an application we introduce an oriented supersingular isogeny Diffie-Hellman protocol (OSIDH), analogous to the supersingular isogeny Diffie-Hellman (SIDH) protocol and generalizing the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.