Extracellular vesicles (EVs) are minute vesicles with lipid bilayer membranes. EVs are secreted by cells for intercellular communication. Recently, EVs have received much attention, as they are rich in biological components such as nucleic acids, lipids, and proteins that play essential roles in tissue regeneration and disease modification. In addition, EVs can be developed as vaccines against cancer and infectious diseases, as the vesicle membrane has an abundance of antigenic determinants and virulent factors. EVs for therapeutic applications are typically collected from conditioned media of cultured cells. However, the number of EVs secreted by the cells is limited. Thus, it is critical to devise new strategies for the large-scale production of EVs. Here, we discussed the strategies utilized by researchers for the scalable production of EVs. Techniques such as bioreactors, mechanical stimulation, electrical stimulation, thermal stimulation, magnetic field stimulation, topographic clue, hypoxia, serum deprivation, pH modification, exposure to small molecules, exposure to nanoparticles, increasing the intracellular calcium concentration, and genetic modification have been used to improve the secretion of EVs by cultured cells. In addition, nitrogen cavitation, porous membrane extrusion, and sonication have been utilized to prepare EV-mimetic nanovesicles that share many characteristics with naturally secreted EVs. Apart from inducing EV production, these upscaling interventions have also been reported to modify the EVs’ cargo and thus their functionality and therapeutic potential. In summary, it is imperative to identify a reliable upscaling technique that can produce large quantities of EVs consistently. Ideally, the produced EVs should also possess cargo with improved therapeutic potential.
The remarkable advances in the systemic therapy of metastatic melanoma have now extended the 1-year overall survival rate from 25% to nearing 85%. Systemic treatment in the form of BRAF-targeted therapy and immunotherapy is slowly but surely proving its efficacy in the treatment of metatstatic brain metastases (MBM). Single-agent BRAF inhibitors provide an intracranial response rate of 25% to 40%, whereas the combination of BRAFi/MEKi leads to responses in up to 58%. However, the durability of responses induced by BRAFi/MEKi seems to be even shorter than in extracranial disease. On the other hand, single-agent ipilimumab provides comparable clinical benefit in MBMs as it does in extracranial metastases. Single-agent PD-1 anitbodies induce response rates of approximately 20%, and those responses appear durable. Similarly the combination of CTLA-4+ PD-1 antibodies induces durable responses at an impressive rate of 55% and is safe to administer. Although the local treatment approaches with radiation and surgery remain important and are critically needed in the management of MBM, systemic therapy offers a new dimension that can augment the impact of those therapies and come at a potentially lower cost of neurocognitive impairment. Considerations for combining those modalities are direly needed, in addition to considering novel systemic combinations that target mechanisms specific to MBM. In this report, we will discuss the underlying biology of melanoma brain metastases, the clinical outcomes from recent clinical trials of targeted and immunotherapy, and their impact on clinical practice in the context of existing local therapeutic modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.