We study the dynamics of the one-year change in P&C insurance reserves estimation by analyzing the process that leads to the ultimate risk in the case of “fixed-sum” insurance contracts. The random variable ultimately is supposed to follow a binomial distribution. We compute explicitly various quantities of interest, in particular the Solvency Capital Requirement for one year change and the Risk Margin, using the characteristics of the underlying model. We then compare them with the same figures calculated with existing risk estimation methods. In particular, our study shows that standard methods (Merz–Wüthrich) can lead to materially incorrect results if the assumptions are not fulfilled. This is due to a multiplicative error assumption behind the standard methods, whereas our example has an additive error propagation as often happens in practice.
We establish a pathwise large deviation principle for affine stochastic volatility models introduced by Keller-Ressel (2011), and present an application to variance reduction for Monte Carlo computation of prices of path-dependent options in these models, extending the method developed by Genin and Tankov (2020) for exponential Lévy models. To this end, we apply an exponentially affine change of measure and use Varadhan’s lemma, in the fashion of Guasoni and Robertson (2008) and Robertson (2010), to approximate the problem of finding the measure that minimizes the variance of the Monte Carlo estimator. We test the method on the Heston model with and without jumps to demonstrate its numerical efficiency.
In this paper we consider the pricing of options on interest rates such as caplets and swaptions in the Lévy Libor model developed by Eberlein andÖzkan (2005). This model is an extension to Lévy driving processes of the classical log-normal Libor market model (LMM) driven by a Brownian motion. Option pricing is significantly less tractable in this model than in the LMM due to the appearance of stochastic terms in the jump part of the driving process when performing the measure changes which are standard in pricing of interest rate derivatives. To obtain explicit approximation for option prices, we propose to treat a given Lévy Libor model as a suitable perturbation of the log-normal LMM. The method is inspired by recent works byČerný, Denkl, and Kallsen (2013) and Ménassé and Tankov (2015). The approximate option prices in the Lévy Libor model are given as the corresponding LMM prices plus correction terms which depend on the characteristics of the underlying Lévy process and some additional terms obtained from the LMM model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.