Imaging spectrometry from aerial or spaceborne platforms, also known as hyperspectral remote sensing, provides dense sampled and fine structured spectral information for each image pixel, allowing the user to identify and characterize Earth surface materials such as minerals in rocks and soils, vegetation types and stress indicators, and water constituents. The recently launched DLR Earth Sensing Imaging Spectrometer (DESIS) installed on the International Space Station (ISS) closes the long-term gap of sparsely available spaceborne imaging spectrometry data and will be part of the upcoming fleet of such new instruments in orbit. DESIS measures in the spectral range from 400 and 1000 nm with a spectral sampling distance of 2.55 nm and a Full Width Half Maximum (FWHM) of about 3.5 nm. The ground sample distance is 30 m with 1024 pixels across track. In this article, a detailed review is given on the applicability of DESIS data based on the specifics of the instrument, the characteristics of the ISS orbit, and the methods applied to generate products. The various DESIS data products available for users are described with the focus on specific processing steps. The results of the data quality and product validation studies show that top-of-atmosphere radiance, geometrically corrected, and bottom-of-atmosphere reflectance products meet the mission requirements. The limitations of the DESIS data products are also subject to a critical examination.
Whether for identification and characterization of materials or for monitoring of theenvironment, space-based hyperspectral instruments are very useful. Hyperspectral instrumentsmeasure several dozens up to hundreds of spectral bands. These data help to reconstruct the spectralproperties like reflectance or emission of Earth surface or the absorption of the atmosphere, and toidentify constituents on land, water, and in the atmosphere. There are a lot of possible applications,from vegetation and water quality up to greenhouse gas monitoring. But the actual number ofhyperspectral space-based missions or hyperspectral space-based data is limited. This will be changedin the next years by different missions. The German Aerospace Center (DLR) Earth Sensing ImagingSpectrometer (DESIS) is one of the new currently existing space-based hyperspectral instruments,launched in 2018 and ready to reduce the gap of space-born hyperspectral data. The instrument isoperating onboard the International Space Station, using the Multi-User System for Earth Sensing(MUSES) platform. The instrument has 235 spectral bands in the wavelength range from visible(400 nm) to near-infrared (1000 nm), which results in a 2.5 nm spectral sampling distance and aground sampling distance of 30 m from 400 km orbit of the International Space Station. In this article,the design of the instrument will be described.
ABSTRACT:The new hyperspectral instrument DLR Earth Sensing Imaging Spectrometer (DESIS) will be developed and integrated in the MultiUser-System for Earth Sensing (MUSES) platform installed on the International Space Station (ISS). The DESIS instrument will be launched to the ISS mid of 2017 and robotically installed in one of the four slots of the MUSES platform. After a four month commissioning phase the operational phase will last at least until 2020. The MUSES / DESIS system will be commanded and operated by the publically traded company TBE (Teledyne Brown Engineering), which initiated the whole program. TBE provides the MUSES platform and the German Aerospace Center (DLR) develops the instrument DESIS and establishes a Ground Segment for processing, archiving, delivering and calibration of the image data mainly used for scientific and humanitarian applications. Well calibrated and harmonized products will be generated together with the Ground Segment established at Teledyne. The article describes the Space Segment consisting of the MUSES platform and the instrument DESIS as well as the activities at the two (synchronized) Ground Segments consisting of the processing methods, product generation, data calibration and product validation. Finally comments to the data policy are given..
Abstract. The UNFCCC (United Nations Framework Convention on Climate Change) requires the nations of the world to report their carbon dioxide (CO2) emissions. The independent verification of these reported emissions is a cornerstone for advancing towards the emission accounting and reduction measures agreed upon in the Paris Agreement. In this paper, we present the concept and first performance assessment of a compact spaceborne imaging spectrometer with a spatial resolution of 50×50 m2 that could contribute to the “monitoring, verification and reporting” (MVR) of CO2 emissions worldwide. CO2 emissions from medium-sized power plants (1–10 Mt CO2 yr−1), currently not targeted by other spaceborne missions, represent a significant part of the global CO2 emission budget. In this paper we show that the proposed instrument concept is able to resolve emission plumes from such localized sources as a first step towards corresponding CO2 flux estimates. Through radiative transfer simulations, including a realistic instrument noise model and a global trial ensemble covering various geophysical scenarios, it is shown that an instrument noise error of 1.1 ppm (1σ) can be achieved for the retrieval of the column-averaged dry-air mole fraction of CO2 (XCO2). Despite a limited amount of information from a single spectral window and a relatively coarse spectral resolution, scattering by atmospheric aerosol and cirrus can be partly accounted for in the XCO2 retrieval, with deviations of at most 4.0 ppm from the true abundance for two-thirds of the scenes in the global trial ensemble. We further simulate the ability of the proposed instrument concept to observe CO2 plumes from single power plants in an urban area using high-resolution CO2 emission and surface albedo data for the city of Indianapolis. Given the preliminary instrument design and the corresponding instrument noise error, emission plumes from point sources with an emission rate down to the order of 0.3 Mt CO2 yr−1 can be resolved, i.e., well below the target source strength of 1 Mt CO2 yr−1. This leaves a significant margin for additional error sources, like scattering particles and complex meteorology, and shows the potential for subsequent CO2 flux estimates with the proposed instrument concept.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.