Summ~aryDuring human immunodeficiency virus (HIV) infection there is a profound and selective decrease in the CD4 + population of T lymphocytes. The mechanism of this depletion is not understood, as only a small fraction of all CD4 + cells appear to be productively infected with HIV-1 in seropositive individuals. In the present study, crosslinking of bound gp120 on human CD4 + T cells followed by signaling through the T cell receptor for antigen was found to result in activation-dependent cell death by a form of cell suicide termed apoptosis, or programmed cell death. The data indicate that even picomolar concentrations of gp120 prime T cells for activationinduced cell death, suggesting a mechanism for CD4 + T cell depletion in acquired immune deficiency syndrome (AIDS), particularly in the face of concurrent infection and antigenic challenge with other organisms. These results also provide an explanation for the enhancement of infection by certain antibodies against HIV, and for the paradox that HIV appears to cause AIDS after the onset of antiviral immunity.T he immunodeficiency that defines AIDS is due primarily to a progressive decline in the number and function of CD4 + T cells. The mechanism of this decline is debated, though lyric infection of cells targeted by interaction of CD4 with the envelope glycoprotein of the HIV virion, gp120, is an obvious model (1-4), and recent data suggest an apoptotic mechanism of cell death after HIV infection (5). However, previous studies have found that only 1 in 1-10 x 104 PBMC actively express HIV-1 in patients with AIDS (6-10), and immune dysfunction is seen early in infection, before a significant proportion of CD4 + cells has been eliminated (11-15). Thus, it is likely that mechanisms other than direct viral destruction contribute to CD4 + T cell loss and to the anergy associated with CD4 + T cell-dependent immune responses.Mouse splenic T cells pretreated with anti-CD4 antibodies die by apoptosis when stimulated through the oL/~ TCR (16). Apoptosis is an active form of physiologic cell death, requiring RNA and protein synthesis, which is characterized by the activation of endogenous endonucleases that cleave chromatin DNA between nucleosomes (17, 18). Here we report that crosslinking of gp120 on human CD4 + T cells followed by signaling through the TCR results in activation-induced cell death. This cell death has the characteristic features of apoptosis, including the histologic changes of nuclear and cytoplasmic condensation and DNA fragmentation into nucleosome-sized multimers of 200 bp. Our data provide a mechanism for the recent observation that CD4 + T cells from HIV-infected individuals are primed in vivo for suicide by apoptosis, upon TCR activation by both superantigen and MHC class II-restricted antigens (19). Materials and Methodslsola~'on ofCD4 + T Cells. Human T ceils were separated from Ficoll-Hypaque-isolated PBMC by rosetting with 2-aminoethylisothio-uronium bromide hydrobromide (AET)-treated SRBC, as described (20). CD4 + calls were isolated by incu...
Recent evidence suggests that the pathogenesis of Sydenham's chorea following group A streptococcal infection is due to antibodies which develop due to the infection and infiltrate the brain and basal ganglia. Antibodies present in acute chorea react with the surface of neuronal cells and signal the induction of calcium calmodulin dependent protein kinase II with elevation of tyrosine hydroxylase and subsequent dopamine release which may lead to the movement disorder. The antibodies present in disease recognize lysoganglioside and the group A streptococcal epitope, N-acetyl-glucosamine. Monoclonal antibodies (mAbs) from Sydenham's chorea demonstrated the mimicry between lysoganglioside and the group A streptococcal carbohydrate epitope. A group of antibodies present in pediatric autoimmune neuropsychiatric disorders (PANDAS) were similar but not identical to the antibodies observed in chorea.
Although immune responses against group A streptococci and the heart have been correlated with antibodies and T cell responses against cardiac myosin, there is no unifying hypothesis about carditis caused globally by many different serotypes. Our study identified disease-specific epitopes of human cardiac myosin in the development of rheumatic carditis in humans. We found that immune responses to cardiac myosin were similar in rheumatic carditis among a small sample of worldwide populations, in which immunoglobulin G targeted human cardiac myosin epitopes in the S2 subfragment hinge region within S2 peptides containing amino acid residues 842-992 and 1164-1272. An analysis of rheumatic carditis in a Pacific Islander family confirmed the presence of potential rheumatogenic epitopes in the S2 region of human cardiac myosin. Our report suggests that cardiac myosin epitopes in rheumatic carditis target the S2 region of cardiac myosin and are similar among populations with rheumatic carditis worldwide, regardless of the infecting group A streptococcal M serotype.
So-called rheumatogenic emm types and/or serotypes, which were previously associated with ARF in the continental United States, were not found in this study. Instead, emm types that are not commonly included among group A streptococci isolates in the continental United States and that are seldom, if ever, temporally associated with ARF were identified. These findings suggest that unusual group A streptococci emm types play a significant role in the epidemiology of ARF in Hawaii.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.