Objectives To study the role of junctophilin 2 (JPH2) in atrial fibrillation (AF). Background JPH2 is believed to have an important role in sarcoplasmic reticulum (SR) Ca2+ handling and modulation of ryanodine receptor Ca2+ channels (RyR2). Whereas defective RyR2-mediated Ca2+ release contributes to the pathogenesis of AF, nothing is known about the potential role of JPH2 in atrial arrhythmias. Methods Screening 203 unrelated hypertrophic cardiomyopathy patients uncovered a novel JPH2 missense mutation (E169K) in 2 patients with juvenile-onset paroxysmal AF (pAF). Pseudo-knockin (PKI) mouse models were generated to determine the molecular defects underlying the development of AF caused by this JPH2 mutation. Results PKI mice expressing E169K mutant JPH2 exhibited a higher incidence of inducible AF compared with wildtype (WT)-PKI mice, while A399S-PKI mice expressing a HCM-linked JPH2 mutation not associated with atrial arrhythmias were not significantly different from WT-PKI. E169K-PKI but not A399A-PKI atrial cardiomyocytes showed an increased incidence of abnormal SR Ca2+ release events. These changes were attributed to reduced binding of E169KJPH2 to RyR2. Atrial JPH2 levels in WT-JPH2 transgenic, nontransgenic, and JPH2 knockdown mice correlated negatively with the incidence of pacing-induced AF. Ca2+ spark frequency in atrial myocytes and the open probability of single RyR2 channels from JPH2 knockdown mice was significantly reduced by a small JPH2-mimicking oligopeptide. Moreover, patients with pAF had reduced atrial JPH2 levels per RyR2 channel compared to sinus rhythm patients, and an increased frequency of spontaneous Ca2+ release events. Conclusions Our data suggest a novel mechanism by which reduced JPH2-mediated stabilization of RyR2 due to loss-of-function mutation or reduced JPH2:RyR2 ratios can promote SR Ca2+ leak and atrial arrhythmias, representing a potential novel therapeutic target for AF.
Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias.
Our findings suggest that JPH2 is necessary for TT maturation during postnatal cardiac development in mice. In particular, JPH2 may be critical in anchoring the invaginating sarcolemma to the sarcoplasmic reticulum, thereby enabling the maturation of the TT network.
Rationale Junctional membrane complexes (JMC) in myocytes are critical microdomains, in which excitation-contraction coupling occurs. Structural and functional disruption of JMCs underlies contractile dysfunction in failing hearts. However, the role of newly identified JMC protein ‘striated muscle preferentially expressed gene’ (SPEG) remains unclear. Objective To determine the role of SPEG in healthy and failing adult hearts. Methods and Results Proteomic analysis of immunoprecipatated JMC-proteins ryanodine receptor type-2 (RyR2) and junctophilin-2 (JPH2) followed by mass spectrometry identified the serine-threonine kinase SPEG as the only novel binding partner for both proteins. Real-time PCR revealed downregulation of SPEG mRNA levels in failing human hearts. A novel cardiac myocyte-specific Speg conditional knockout (MCM-Spegfl/fl) model revealed that adult-onset SPEG-deficiency results in heart failure. Calcium (Ca2+) and transverse-tubule (TT) imaging of ventricular myocytes from MCM-Spegfl/fl mice post heart failure revealed both increased SR Ca2+ spark frequency and disrupted JMC integrity. Additional studies revealed that TT disruption precedes the development of heart failure development in MCM-Spegfl/fl mice. Although total JPH2 levels were unaltered, JPH2 phosphorylation levels were found to be reduced in MCM-Spegfl/fl mice, suggesting that loss of SPEG phosphorylation of JPH2 led to TT disruption, a precursor of heart failure development in SPEG deficient mice. Conclusion The novel JMC protein SPEG is downregulated in human failing hearts. Acute loss of SPEG in mouse hearts causes JPH2 dephosphorylation and TT loss associated with downstream Ca2+ mishandling leading to heart failure. Our study suggests that SPEG could be a novel target for the treatment of heart failure.
Excitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin-1 and junctophilin-2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiologic roles are highlighted by the pathophysiology which results when these proteins are perturbed and a growing body of literature has associated junctophilins with the pathogenesis of human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.