We performed second harmonic generation (SHG) imaging of collagen in rat-tendon cryosections, using femtosecond laser scanning confocal microscopy, both in backscattering and transmission geometries. SHG transmission images of collagen fibers were spatially resolved due to a coherent, directional SHG component. This effect was enhanced with the use of an index-matching fluid (n(i) = 1.52). The average SHG intensity oscillated with wavelength in the backscattered geometry (isotropic SHG component), whereas the spectral profile was consistent with quasi-phase-matching conditions in transmission geometry (forward propagating, coherent SHG component) around 440 nm (lambda(p) = 880 nm). Collagen type I from bovine Achilles tendon was imaged for SHG in the backscattered geometry and its first-order effective nonlinear coefficient was determined (|d(eff)| approximately 0.085(+/-0.025)x10(-12)mV(-1)) by comparison to samples of inorganic materials with known effective nonlinear coefficients (LiNbO3 and LiIO3). The SHG spectral response of collagen type I from bovine Achilles tendon matched that of the rat-tendon cryosections in backscattered geometry. Collagen types I, II, and VI powders (nonfibrous) did not show any detectable SHG, indicating a lack of noncentrosymmetric crystalline structure at the molecular level. The various stages of collagen thermal denaturation were investigated in rat-tendon cryosections using SHG and bright-field imaging. Thermal denaturation resulted in the gradual destruction of the SHG signal.
The requirement for atrial function in developing heart is unknown. To address this question, we have generated mice deficient in atrial myosin light chain 2 (MLC2a), a major structural component of the atrial myofibrillar apparatus. Inactivation of the Mlc2a gene resulted in severely diminished atrial contraction and consequent embryonic lethality at ED10.5-11.5, demonstrating that atrial function is essential for embryogenesis. Our data also address two longstanding questions in cardiovascular development: the connection between function and form during cardiac morphogenesis, and the requirement for cardiac function during vascular development. Diminished atrial function in MLC2a-null embryos resulted in a number of consistent secondary abnormalities in both cardiac morphogenesis and angiogenesis. Our results unequivocally demonstrate that normal cardiac function is directly linked to normal morphogenic development of heart and vasculature. These data have important implications for the etiology of congenital heart disease.
BackgroundVenous leg ulcers can be very hard to heal and represent a significant medical need with no effective therapeutic treatment currently available.Principal FindingsIn wound edge biopsies from human venous leg ulcers we found a striking upregulation of dermal N-cadherin, Zonula Occludens-1 and the gap junction protein Connexin43 (Cx43) compared to intact skin, and in stark contrast to the down-regulation of Cx43 expression seen in acute, healing wounds. We targeted the expression of these proteins in 3T3 fibroblasts to evaluate their role in venous leg ulcers healing. Knockdown of Cx43 and N-cadherin, but not Zonula Occludens-1, accelerated cell migration in a scratch wound-healing assay. Reducing Cx43 increased Golgi reorientation, whilst decreasing cell adhesion and proliferation. Furthermore, Connexin43 and N-cadherin knockdown led to profound effects on fibroblast cytoskeletal dynamics after scratch-wounding. The cells exhibited longer lamelipodial protrusions lacking the F-actin belt seen at the leading edge in wounded control cells. This phenotype was accompanied by augmented activation of Rac-1 and RhoA GTPases, as revealed by Förster Resonance Energy Transfer and pull down experiments.ConclusionsCx43 and N-cadherin are potential therapeutic targets in the promotion of healing of venous leg ulcers, by acting at least in part through distinct contributions of cell adhesion, migration, proliferation and cytoskeletal dynamics.
Follicle-Stimulating Hormone (FSH) at a wide range of doses is routinely added to culture media during in vitro maturation (IVM) of oocytes, but the effects on oocyte health are unclear. The suggestion that superovulation may cause aneuploidy and fetal abnormalities prompted us to study the potential role of FSH in the genesis of chromosomal abnormalities during meiosis I. Mouse cumulus-oocyte complexes (COCs) isolated from the antral follicles of unprimed, sexually immature B6CBF1 mice were cultured in increasing concentrations of FSH. Following culture, matured oocytes were isolated, spread, stained with DAPI, and the numbers of chromosomes counted. Significantly increased aneuploidy, arising during the first meiotic division, was observed in metaphase II oocytes matured in higher concentrations of FSH (> or =20 ng/ml). The effect of FSH on spindle morphology and chromosome alignment during metaphase I was then explored using immunocytochemistry and three-dimensional reconstruction of confocal sections. High FSH had no effect on gross spindle morphology but did alter chromosome congression during prometaphase and metaphase, with the spread of chromosomes across the spindle at this time being significantly greater in oocytes cultured in 2000 ng/ml compared with 2 ng/ml FSH. Analysis of three-dimensional reconstructions of spindles in oocytes matured in 2000 ng/ml FSH shows that chromosomes are more scattered and farther apart than they are following maturation in 2 ng/ml FSH. These results demonstrate that exposure to high levels of FSH during IVM can accelerate nuclear maturation and induce chromosomal abnormalities and highlights the importance of the judicious use of FSH during IVM.
Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and diabetes becomes more prevalent [1]. Patient morbidity and quality of life are profoundly altered by chronic wounds [2]. Unfortunately a significant proportion of these chronic wounds fail to respond to conventional treatment and can result in amputation of the lower limb. Life quality and expectancy following amputation is severely reduced. These hard to heal wounds also represent a growing economic burden on Western society with published estimates of costs to healthcare services in the region of $25B annually [3]. There exists a growing need for specific and effective therapeutic agents to improve healing in these wounds. In recent years the gap junction protein Cx43 has been shown to play a pivotal role early on in the acute wound healing process at a number of different levels [4-7]. Conversely, abnormal expression of Cx43 in wound edge keratinocytes was shown to underlie the poor rate of healing in diabetic rats, and targeting its expression with an antisense gel restored normal healing rates [8]. The presence of Cx43 in the wound edge keratinocytes of human chronic wounds has also been reported [9]. Abnormal Cx43 biology may underlie the poor healing of human chronic wounds and be amenable therapeutic intervention [7]. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.