The C. elegans egl-36 gene encodes a Shaw-type potassium channel that regulates egg-laying behavior. Gain of function [egl-36(gf)] and dominant negative [egl-36(dn)] mutations in egl-36 cause reciprocal defects in egg laying. An egl-36::gfp reporter is expressed in the egg-laying muscles and in a few other tissues. Expression of an egl-36(gf) cDNA in the egg-laying muscles causes behavioral defects similar to those observed in egl-36(gf) mutants. Gain of function EGL-36 subunits form channels that are active at more negative potentials than wild-type channels. The egl-36(gf) alleles correspond to missense mutations in an amino terminal subunit assembly domain (E138K) and in the S6 transmembrane domain (P435S), neither of which were previously implicated in the voltage dependence of channel activation. Altogether, these results suggest that EGL-36 channels regulate the excitability of the egg-laying muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.