Aims (1) To investigate whether a daily acute:chronic workload ratio informs injury risk in Australian football players; (2) to identify which combination of workload variable, acute and chronic time window best explains injury likelihood. Methods Workload and injury data were collected from 53 athletes over 2 seasons in a professional Australian football club. Acute:chronic workload ratios were calculated daily for each athlete, and modelled against non-contact injury likelihood using a quadratic relationship. 6 workload variables, 8 acute time windows (2-9 days) and 7 chronic time windows (14-35 days) were considered (336 combinations). Each parameter combination was compared for injury likelihood fit (using R 2 ).Results The ratio of moderate speed running workload (18-24 km/h) in the previous 3 days (acute time window) compared with the previous 21 days (chronic time window) best explained the injury likelihood in matches (R 2 =0.79) and in the immediate 2 or 5 days following matches (R 2 =0.76-0.82). The 3:21 acute: chronic workload ratio discriminated between high-risk and low-risk athletes (relative risk=1.98-2.43). Using the previous 6 days to calculate the acute workload time window yielded similar results. The choice of acute time window significantly influenced model performance and appeared to reflect the competition and training schedule. Conclusions Daily workload ratios can inform injury risk in Australian football. Clinicians and conditioning coaches should consider the sport-specific schedule of competition and training when choosing acute and chronic time windows. For Australian football, the ratio of moderate speed running in a 3-day or 6-day acute time window and a 21-day chronic time window best explained injury risk.
To investigate whether training load monitoring data could be used to predict injuries in elite Australian football players, data were collected from elite athletes over 3 seasons at an Australian football club. Loads were quantified using GPS devices, accelerometers and player perceived exertion ratings. Absolute and relative training load metrics were calculated for each player each day (rolling average, exponentially weighted moving average, acute:chronic workload ratio, monotony and strain). Injury prediction models (regularised logistic regression, generalised estimating equations, random forests and support vector machines) were built for non-contact, non-contact time-loss and hamstring specific injuries using the first two seasons of data. Injury predictions were generated for the third season and evaluated using the area under the receiver operator characteristic (AUC). Predictive performance was only marginally better than chance for models of non-contact and non-contact time-loss injuries (AUC<0.65). The best performing model was a multivariate logistic regression for hamstring injuries (best AUC=0.76). Learning curves suggested logistic regression was underfitting the load-injury relationship and that using a more complex model or increasing the amount of model building data may lead to future improvements. Injury prediction models built using training load data from a single club showed poor ability to predict injuries when tested on previously unseen data, suggesting they are limited as a daily decision tool for practitioners. Focusing the modelling approach on specific injury types and increasing the amount of training data may lead to the development of improved predictive models for injury prevention.
Many studies on the relationship between training loads and injury that have used regression modeling have significant limitations due to improper discretization of continuous variables and risk estimates. Continuous methods are more suited to modeling the relationship between training load and injury. Comparing injury risk models using ROC curves can lead to inferior model selection. Measures of calibration are more informative judging the utility of injury risk models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.