The mechanism of action of acupuncture remains largely unknown. The reaction to acupuncture needling known as 'de qi', widely viewed as essential to the therapeutic effect of acupuncture, may be a key to understanding its mechanism of action. De qi includes a characteristic needling sensation, perceived by the patient, and 'needle grasp' perceived by the acupuncturist. During needle grasp, the acupuncturist feels pulling and increased resistance to further movement of the inserted needle. We hypothesize that 1) needle grasp is due to mechanical coupling between the needle and connective tissue with winding of tissue around the needle during needle rotation and 2) needle manipulation transmits a mechanical signal to connective tissue cells via mechanotransduction. Such a mechanism may explain local and remote, as well as long-term effects of acupuncture.
Acupuncture needle manipulation gives rise to "needle grasp," a biomechanical phenomenon characterized by an increase in the force necessary to pull the needle out of the tissue (pullout force). This study investigates the hypothesis that winding of connective tissue, rather than muscle contraction, is the mechanism responsible for needle grasp. We performed 1) measurements of pullout force in humans with and without needle penetration of muscle; 2) measurements of pullout force in anesthetized rats, with and without needle rotation, followed by measurements of connective tissue volume surrounding the needle; 3) imaging of rat abdominal wall explants, with and without needle rotation, using ultrasound scanning acoustic microscopy. We found 1) no evidence that increased penetration of muscle results in greater pullout force than increased penetration of subcutaneous tissue; 2) that both pullout force and subcutaneous tissue volume were increased by needle rotation; 3) that increased periodic architectural order was present in subcutaneous tissue with rotation, compared with no rotation. These data support connective tissue winding as the mechanism responsible for the increase in pullout force induced by needle rotation. Winding may allow needle movements to deliver a mechanical signal into the tissue and may be key to acupuncture's therapeutic mechanism.
During acupuncture treatments, acupuncture needles are manipulated to elicit the characteristic "de qi" reaction widely viewed as essential to acupuncture's therapeutic effect. De qi has a biomechanical component, "needle grasp," which we have quantified by measuring the force necessary to pull an acupuncture needle out of the skin (pullout force) in 60 human subjects. We hypothesized that pullout force is greater with both bidirectional needle rotation (BI) and unidirectional rotation (UNI) than no rotation (NO). Acupuncture needles were inserted, manipulated, and pulled out by using a computer-controlled acupuncture needling instrument at eight acupuncture points and eight control points. We found 167 and 52% increases in mean pullout force with UNI and BI, respectively, compared with NO (repeated-measures ANOVA, P < 0.001). Pullout force was on average 18% greater at acupuncture points than at control points (P < 0.001). Needle grasp is therefore a measurable biomechanical phenomenon associated with acupuncture needle manipulation.
Acupuncture needle rotation has been previously shown to cause specific mechanical stimulation of subcutaneous connective tissue. This study uses acupuncture to investigate the role of mechanotransduction-based mechanisms in mechanically-induced cytoskeletal remodeling. The effect of acupuncture needle rotation was quantified by morphometric analysis of mouse tissue explants imaged with confocal microscopy. Needle rotation induced extensive fibroblast spreading and lamellipodia formation within 30 min, measurable as an increased in cell body cross sectional area. The effect of rotation peaked with two needle revolutions and decreased with further increases in rotation. Significant effects of rotation were present throughout the tissue, indicating the presence of a response extending laterally over several centimeters. The effect of rotation with two needle revolutions was prevented by pharmacological inhibitors of actomyosin contractility (blebbistatin), Rho kinase (Y-27632 and H-1152), and Rac signaling. The active cytoskeletal response of fibroblasts demonstrated in this study constitutes an important step in understanding cellular mechanotransduction responses to externally applied mechanical stimuli in whole tissue, and supports a previously proposed model for the mechanism of acupuncture involving connective tissue mechanotransduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.