A software-based digital signal processing (DSP) method using the data system processor has been developed to demodulate the photoacoustic responses of a sample to the fundamental phase modulation frequency and its harmonic frequencies (up to the ninth harmonic) in step-scan FT-IR photoacoustic measurements, without the use of any additional hardware. The DSP algorithm and its sampling depth multiplexing advantages are compared to conventional hardware demodulation. Comparison of results from the DSP method to those from hardware demodulators are shown at both the phase modulation frequency and the harmonics, and application of the DSP method to step-scan photoacoustic measurements with phase modulation is discussed as it applies to obtaining depth profile information in heterogeneous materials.
Digital signal processing (DSP) has been implemented in a step-scan FT-IR spectrometer in a modification that enables processing of high-frequency polarization modulation signals. In this work, direct comparison is made between vibrational circular dichroism (VCD) spectra measured on the same instrument, with the same samples, under the same conditions, using this new DSP method and a conventional rapid-scan technique (employing a lock-in amplifier for demodulation). In this initial test, both techniques generated high-quality VCD for solution phase, rigid chiral molecules such α-pinene and camphor. Noise and reproducibility of known spectral features, as well as enhancing signal measurability and discrimination, were used as criteria for the selection of optimal DSP measurement parameters. Both DSP and rapid-scan VCD methods produced qualitatively reasonable spectra for biologically related molecules such as poly-γ-benzyl-L-glutamate, poly-L-proline, and duplex RNA homopolymer. In most cases, the DSP method had a slight signal-to-noise advantage based on standard deviations of the noise trace data over the rapid-scan measurement, but the final results did depend on the details of the data collection and the phase correction methods inherent in both methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.