Conventional wisdom regarding mechanisms of bacterial pathogenesis holds that pathogens arise by external acquisition of distinct virulence factors, whereas determinants shared by pathogens and commensals are considered to be functionally equivalent and have been ignored as genes that could become adapted specifically for virulence. It is shown here, however, that genetic variation in an originally commensal trait, the FimH lectin of type 1 fimbriae, can change the tropism of Escherichia coli, shifting it toward a urovirulent phenotype. Random point mutations in fimH genes that increase binding of the adhesin to mono-mannose residues, structures abundant in the oligosaccharide moieties of urothelial glycoproteins, confer increased virulence in the mouse urinary tract. These mutant FimH variants, however, are characterized by increased sensitivity to soluble inhibitors bathing the oropharyngeal mucosa, the physiological portal of E. coli. This functional trade-off seems to be detrimental for the intestinal ecology of the urovirulent E. coli. Thus, bacterial virulence can be increased by random functional mutations in a commensal trait that are adaptive for a pathologic environment, even at the cost of reduced physiological fitness in the nonpathologic habitat.
The alarming increase in drug-resistant bacteria makes a search for novel means of fighting bacterial infections imperative. An attractive approach is the use of agents that interfere with the ability of the bacteria to adhere to tissues of the host, since such adhesion is one of the initial stages of the infectious process. The validity of this approach has been unequivocally demonstrated in experiments performed in a wide variety of animals, from mice to monkeys, and recently also in humans. Here we review various approaches to anti-adhesion therapy, including the use of receptor and adhesin analogs, dietary constituents, sublethal concentrations of antibiotics and adhesin-based vaccines. Because anti-adhesive agents are not bactericidal, the propagation and spread of resistant strains is much less likely to occur than as a result of exposure to bactericidal agents, such as antibiotics. Anti-adhesive drugs, once developed, may, therefore, serve as a new means to fight infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.