Many crayfish species inhabit murky waters or have a crepuscular lifestyle, which forces them to rely on chemical and mechanical information rather than visual input. Information on how they use one form of mechanical information-tactile cues-to explore their local environment is limited. We observed the exploratory behavior of the crayfish Cherax destructor in a T-maze under red light. Animals moved forward along the long arm of the maze and then moved equally in one of two available directions. The arm chosen by one crayfish did not affect that selected by a second crayfish tested immediately after in an unwashed maze. Previous experience in the maze also did not affect the choice. We found, however, that crayfish with one antenna denervated or splinted back to the carapace turned more often toward the unaltered side. Our data support the hypothesis that crayfish bilaterally compare information from their antennae.
Conotoxins, venom peptides from marine cone snails, diversify rapidly as speciation occurs. It has been suggested that each species can synthesize between 1000 and 1900 different toxins with little to no interspecies overlap. Conotoxins exhibit an unprecedented degree of post-translational modifications, the most common one being the formation of disulfide bonds. Despite the great diversity of structurally complex peptides, little is known about the glandular proteins responsible for their biosynthesis and maturation. Here, proteomic interrogations on the Conus venom gland led to the identification of novel glandular proteins of potential importance for toxin synthesis and secretion. A total of 161 and 157 proteins and protein isoforms were identified in the venom glands of Conus novaehollandiae and Conus victoriae, respectively. Interspecies differences in the venom gland proteomes were apparent. A large proportion of the proteins identified function in protein/peptide translation, folding, and protection events. Most intriguingly, however, we demonstrate the presence of a multitude of isoforms of protein disulfide isomerase (PDI), the enzyme catalyzing the formation and isomerization of the native disulfide bond. Investigating whether different PDI isoforms interact with distinct toxin families will greatly advance our knowledge on the generation of cone snail toxins and disulfide-rich peptides in general.
Effective communication requires reliable signals and competent receptors. Theoretical and empirical accounts of animal signaling focus overwhelmingly on the capacity of the signaler to convey the message. Nevertheless, the intended receiver's ability to detect a signal depends on the condition of its receptor organs, as documented for humans. The impact of receptor organ condition on signal reception and its consequences for functional behavior are poorly understood. Social insects use antennae to detect chemical odors that distinguish between nestmates and enemies, reacting aggressively to the latter. We investigated the impact of antennal condition, determined by the density of sensilla, on the behavior of the weaver ant Oecophylla smaragdina. Worker aggression depended upon the condition of their antennae: workers with fewer sensilla on their antennae reacted less aggressively to nonnestmate enemies. These novel data highlight the largely unappreciated significance of receptor organ condition for animal communication and may have implications for coevolutionary processes in animal communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.