High cycle fatigue (HCF) life in cast Al-Mg-Si alloys is particularly sensitive to the combination of microstructural inclusions and stress concentrations. Inclusions can range from large-scale shrinkage porosity with a tortuous surface profile to entrapped oxides introduced during the pour. When shrinkage porosity is controlled, the relevant microstructural initiation sites are often the larger Si particles within eutectic regions. In this paper, a HCF model is introduced which recognizes multiple inclusion severity scales for crack formation. The model addresses the role of constrained microplasticity around debonded particles or shrinkage pores in forming and growing microstructurally small fatigue cracks and is based on the cyclic crack tip displacement rather than linear elastic fracture mechanics stress intensity factor. Conditions for transitioning to long crack fatigue crack growth behavior are introduced. The model is applied to a cast A356-T6 Al alloy over a range of inclusion severities.
In-plane mechanical properties of periodic honeycomb structures with seven different cell types are investigated in this paper. Emphasis is placed on honeycombs with relative density between 0.1 and 0.3, such that initial yield is associated with short column compression or bending, occurring prior to elastic buckling. Effective elastic stiffness and initial yield strength of these metal honeycombs under in-plane compression, shear, and diagonal compression (for cell structures that manifest in-plane anisotropy) are reported as functions of relative density. Comparison among different honeycomb structures demonstrates that the diamond cells, hexagonal periodic supercells composed of six equilateral triangles and the Kagome cells have superior in-plane mechanical properties among the set considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.