Picture archiving and communication systems (PACS) play a critical role in radiology. This paper presents the criteria important to PACS administrators for selecting a PACS. A set of criteria are identified and organized into an integrative hierarchical framework. Survey responses from 48 administrators are used to identify the relative weights of these criteria through an analytical hierarchy process. The five main dimensions for PACS selection in order of importance are system continuity and functionality, system performance and architecture, user interface for workflow management, user interface for image manipulation, and display quality. Among the subdimensions, the highest weights were assessed for security, backup, and continuity; tools for continuous performance monitoring; support for multispecialty images; and voice recognition/transcription. PACS administrators' preferences were generally in line with that of previously reported results for radiologists. Both groups assigned the highest priority to ensuring business continuity and preventing loss of data through features such as security, backup, downtime prevention, and tools for continuous PACS performance monitoring. PACS administrators' next high priorities were support for multispecialty images, image retrieval speeds from short-term and long-term storage, real-time monitoring, and architectural issues of compatibility and integration with other products. Thus, next to ensuring business continuity, administrators' focus was on issues that impact their ability to deliver services and support. On the other hand, radiologists gave high priorities to voice recognition, transcription, and reporting; structured reporting; and convenience and responsiveness in manipulation of images. Thus, radiologists' focus appears to be on issues that may impact their productivity, effort, and accuracy.
Picture archiving and communication systems (PACS) are being widely adopted in radiology practice. The objective of this study was to find radiologists' perspective on the relative importance of the required features when selecting or developing a PACS. Important features for PACS were identified based on the literature and consultation/interviews with radiologists. These features were categorized and organized into a logical hierarchy consisting of the main dimensions and sub-dimensions. An online survey was conducted to obtain data from 58 radiologists about their relative preferences. Analytical hierarchy process methodology was used to determine the relative priority weights for different dimensions along with the consistency of responses. System continuity and functionality was found to be the most important dimension, followed by system performance and architecture, user interface for workflow management, user interface for image manipulation, and display quality. Among the sub-dimensions, the top two features were: security, backup, and downtime prevention; and voice recognition, transcription, and reporting. Structured reporting was also given very high priority. The results point to the dimensions that can be critical discriminators between different PACS and highlight the importance of faster integration of the emerging developments in radiology into PACS.
We have developed a centralized application for acquiring images from multiple picture archiving and communication systems (PACS) and distributing images to a clinical image web server and other repositories. Our flexible strategy addresses a number of administrative challenges associated with delivering images into clinical, research, and test environments. DICOM images flow from PACSs and modalities to a UNIX-based "distributor" application, which relays them to one or more destinations. Image volume and transmission times were collected and analyzed. Three distributors receive an average of 34 gigabytes of image data per day. Images are sent concurrently to two web-based image servers, one used clinically by physicians and one used for testing. Transmission of certain classes of studies is prioritized for key physician groups. Delivery to research systems is also supported. Acquiring images from multi-vendor PACS for distribution to a web server for clinical image viewing is a challenging task. Centralizing the acquisition and distribution process reduces both the administrative effort and the impact on clinical operations associated with maintaining dynamic clinical, testing, and research environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.