This memo describes the Network Time Protocol (NTP) designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a returnabletime architecture in which a distributed subnet of time servers operating in a self-organizing, hierarchical, master-slave configuration synchronizes local clocks within the subnet and to national time standards via wire or radio. The servers can also redistribute time information within a network via local routing algorithms and time daemons. The architectures, algorithms and protocols which have evolved to NTP over several years of implementation and refinement are described in this paper. The synchronization subnet which has been in regular operation in the Internet for the last several years is described along with performance data which shows that timekeeping accuracy throughout most portions of the Internet can be ordinarily maintained to within a few tens of milliseconds, even in cases of failure or disruption of clocks, time servers or networks. This memo describes the Network Time Protocol, which is specified as an Internet Standard in RFC-1119. Distribution of this memo is unlimited.
The Network Time Protocol (NTP) is widely used to synchronize computer clocks in the Internet. This document describes NTP version 4 (NTPv4), which is backwards compatible with NTP version 3 (NTPv3), described in RFC 1305, as well as previous versions of the protocol.
Abstruct-This paper describes the network time protocol (NTP), which is designed to distribute time information in a large, diverse internet system operating at speeds from mundane to lightwave. It uses a symmetric architecture in which a distributed subnet of time servers operating in a self-organizing, hierarchical configuration synchronizes local clocks within the subnet and to national time standards via wire, radio, or calibrated atomic clock. The servers can also redistribute time information within a network via local routing algorithms and time daemons. This paper also discusses the architecture, protocol and algorithms, which were developed over several years of implementation refinement and resulted in the designation of NTP as an Internet Standard protocol. The NTP synchronization system, which has been in regular operation in the Internet for the last several years, is described along with performance data which shows that timekeeping accuracy throughout most portions of the Internet can be ordinarily maintained to within a few milliseconds, even in cases of failure or disruption of clocks, time servers or networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.