Nonribosomal peptide synthetases (NRPSs) protect microorganisms from environmental threats by producing diverse siderophores, antibiotics, and other peptide natural products. Their modular molecular structure is also attractive from the standpoint of biosynthetic engineering. Here we evaluate a methodology for swapping module specificities of these mega-enzymes that takes advantage of flavodoxin-like subdomains involved in substrate recognition. Nine subdomains encoding diverse specificities were transplanted into the Phe-specific GrsA initiation module of gramicidin S synthetase. All chimeras could be purified as soluble protein. One construct based on a Val-specific subdomain showed sizable adenylation activity and functioned as a Val-Pro diketopiperazine synthetase upon addition of the proline-specific GrsB1 module. These results suggest that subdomain swapping could be a viable alternative to previous NRPS design approaches targeting binding pockets, domains, or entire modules. The short length of the swapped sequence stretch may facilitate straightforward exploitation of the wealth of existing NRPS modules for combinatorial biosynthesis.
Biosynthetic modification of nonribosomal peptide backbones represents a potentially powerful strategy to modulate the structure and properties of an important class of therapeutics. Using a high-throughput assay for catalytic activity, we show here that an L-Phe-specific module of an archetypal nonribosomal peptide synthetase can be reprogrammed to accept and process the backbone-modified amino acid (S)-β-Phe with near-native specificity and efficiency. A co-crystal structure with a non-hydrolysable aminoacyl-AMP analogue reveals the origins of the 40,000-fold α/β-specificity switch, illuminating subtle but precise remodelling of the active site. When the engineered catalyst was paired with downstream module(s), (S)-β-Phe-containing peptides were produced at preparative scale in vitro (~1 mmol) and high titres in vivo (~100 mg l), highlighting the potential of biosynthetic pathway engineering for the construction of novel nonribosomal β-frameworks.
Nonribosomal peptide synthetases (NRPSs) are multifunctional enzymes that produce a wide array of bioactive peptides. Here we show that a single tryptophan-to-serine mutation in phenylalanine-specific NRPS adenylation domains enables the efficient activation of non-natural aromatic amino acids functionalized with azide and alkyne groups. The resulting 10(5)-fold switch in substrate specificity was achieved without appreciable loss of catalytic efficiency. Moreover, the effective communication of the modified A domains with downstream modules in dipeptide synthetases permitted incorporation of O-propargyl-L-tyrosine into diketopiperazines both in vitro and in vivo, even in the presence of competing phenylalanine. Because azides and alkynes readily undergo bioorthogonal click reactions, reprogramming NRPSs to accept non-natural amino acids that contain these groups provides a potentially powerful means of isolating, labeling, and modifying biologically active peptides.
Nonribosomal peptides (NRPs) are a therapeutically important class of secondary metabolites that are produced by modular synthetases in assembly-line fashion. We previously showed that a single Trp-to-Ser mutation in the initial Phe-loading adenylation domain of tyrocidine synthetase completely switches the specificity toward clickable analogues. Here we report that this minimally invasive strategy enables efficient functionalization of the bioactive NRP on the pathway level. In a reconstituted tyrocidine synthetase, the W227S point mutation permitted selective incorporation of Phe analogues with alkyne, halogen, and benzoyl substituents by the initiation module. The respective W2742S mutation in module 4 similarly permits efficient incorporation of these functionalized substrate analogues at position 4, expanding this strategy to elongation modules. Efficient incorporation of an alkyne handle at position 1 or 4 of tyrocidine A allowed site-selective one-step fluorescent labeling of the corresponding tyrocidine analogues by Cu(I)-catalyzed alkyne−azide cycloaddition. By combining synthetic biology with bioorthogonal chemistry, this approach holds great potential for NRP isolation and molecular target elucidation as well as combinatorial optimization of NRP therapeutics.
Nonribosomal peptide synthetases (NRPSs) are multifunctional enzymes that produce a wide array of bioactive peptides. Here we show that a single tryptophan-to-serine mutation in phenylalanine-specific NRPS adenylation domains enables the efficient activation of non-natural aromatic amino acids functionalized with azide and alkyne groups. The resulting 10 5 -fold switch in substrate specificity was achieved without appreciable loss of catalytic efficiency. Moreover, the effective communication of the modified A domains with downstream modules in dipeptide synthetases permitted incorporation of O-propargyl-l-tyrosine into diketopiperazines both in vitro and in vivo, even in the presence of competing phenylalanine. Because azides and alkynes readily undergo bioorthogonal click reactions, reprogramming NRPSs to accept non-natural amino acids that contain these groups provides a potentially powerful means of isolating, labeling, and modifying biologically active peptides.[**] We thank Prof. Mohamed A. Marahiel (Philipps Universität Marburg) for supplying strain HM0079 and plasmids pSU18_tycA and pTrc99a_tycB1, and Prof. Hans-Martin Fischer (ETH Zürich) for assistance with radiochemical experiments. We are also grateful to Prof. Chaitan Khosla (Stanford University) for valuable discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.