Evapotranspiration (ET) is an important quantity for water resource managers to know because it often represents the largest sink for precipitation (P) arriving at the land surface. In order to estimate actual ET across the conterminous United States (U.S.) in this study, a water-balance method was combined with a climate and land-cover regression equation. Precipitation and streamflow records were compiled for 838 watersheds for 1971-2000 across the U.S. to obtain long-term estimates of actual ET. A regression equation was developed that related the ratio ET ⁄ P to climate and land-cover variables within those watersheds. Precipitation and temperatures were used from the PRISM climate dataset, and land-cover data were used from the USGS National Land Cover Dataset. Results indicate that ET can be predicted relatively well at a watershed or county scale with readily available climate variables alone, and that land-cover data can also improve those predictions. Using the climate and land-cover data at an 800-m scale and then averaging to the county scale, maps were produced showing estimates of ET and ET ⁄ P for the entire conterminous U.S. Using the regression equation, such maps could also be made for more detailed state coverages, or for other areas of the world where climate and land-cover data are plentiful.(KEY TERMS: evapotranspiration; hydrologic cycle; precipitation; streamflow.) Sanford, Ward E. and David L. Selnick, 2012. Estimation of Evapotranspiration Across the Conterminous United States Using a Regression with Climate and Land-Cover Data.
This study by the U.S. Geological Survey, prepared in cooperation with the Virginia Department of Environmental Quality, quantifies the components of the hydrologic cycle across the Commonwealth of Virginia. Long-term, mean fluxes were calculated for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971-2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. The base-flow proportion for the 48 watersheds averaged 72 percent using specific conductance, a value that was substantially higher than the 61 percent average calculated using a graphical-separation technique (the USGS program PART). Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia.
For more information on the USGS-the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS.For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprodTo order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. AbstractEstimating future loadings of nitrogen to the Chesapeake Bay requires knowledge about the groundwater flow system and the traveltime of water and chemicals between recharge at the water table and the discharge to streams and directly to the bay. The Delmarva Peninsula has a relatively large proportion of its land devoted to agriculture and a large associated nitrogen load in groundwater that has the potential to enter the bay in discharging groundwater. To better understand the shallow aquifer system with respect to this loading and the traveltime to the bay, the U.S. Geological Survey constructed a steadystate groundwater flow model for the region. The model is based on estimates of recharge calculated using recently developed regression equations for evapotranspiration and surface runoff. The hydrogeologic framework incorporated into the model includes unconfined surficial aquifer sediments, as well as subcropping confined aquifers and confining beds down to 300 feet below land surface. The model was calibrated using 48 water-level measurements and 24 tracer-based ages from wells located across the peninsula. The resulting steady-state flow solution was used to estimate ages of water in the shallow aquifer system through the peninsula and the distribution and magnitude of groundwater traveltime from recharge at the water table to discharge in surface-water bodies (referred to as return time). Return times vary but are typically less than 10 years near local streams and greater than 100 years near the stream divides. The model can be used to calculate nitrate transport parameters in various local watersheds and predict future trends in nitrate loadings to Chesapeake Bay for different future nitrogen application scenarios.
Mean long-term hydrologic budget components, such as recharge and base flow, are often difficult to estimate because they can vary substantially in space and time. Mean long-term fluxes were calculated in this study for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow using long-term estimates of mean ET and precipitation and the assumption that the relative change in storage over that 30-year period is small compared to the total ET or precipitation. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance (SC) data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971-2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. A new approach to estimate riparian ET using seasonal SC data gave results consistent with those from other methods. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia. The method has the potential to be applied in many other states in the U.S. or in other regions or countries of the world where climate and stream flow data are plentiful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.