Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is essential for normal brain growth and cognitive function. Consistent with its importance in the brain, DHA is highly enriched in brain phospholipids. Despite being an abundant fatty acid in brain phospholipids, DHA cannot be de novo synthesized in brain and must be imported across the blood-brain barrier, but mechanisms for DHA uptake in brain have remained enigmatic. Here we identify a member of the major facilitator superfamily--Mfsd2a (previously an orphan transporter)--as the major transporter for DHA uptake into brain. Mfsd2a is found to be expressed exclusively in endothelium of the blood-brain barrier of micro-vessels. Lipidomic analysis indicates that Mfsd2a-deficient (Mfsd2a-knockout) mice show markedly reduced levels of DHA in brain accompanied by neuronal cell loss in hippocampus and cerebellum, as well as cognitive deficits and severe anxiety, and microcephaly. Unexpectedly, cell-based studies indicate that Mfsd2a transports DHA in the form of lysophosphatidylcholine (LPC), but not unesterified fatty acid, in a sodium-dependent manner. Notably, Mfsd2a transports common plasma LPCs carrying long-chain fatty acids such LPC oleate and LPC palmitate, but not LPCs with less than a 14-carbon acyl chain. Moreover, we determine that the phosphor-zwitterionic headgroup of LPC is critical for transport. Importantly, Mfsd2a-knockout mice have markedly reduced uptake of labelled LPC DHA, and other LPCs, from plasma into brain, demonstrating that Mfsd2a is required for brain uptake of DHA. Our findings reveal an unexpected essential physiological role of plasma-derived LPCs in brain growth and function.
Mutations of the ABC1 transporter have been identified as the defect in Tangier disease, characterized by low HDL and cholesterol ester accumulation in macrophages. A full-length mouse ABC1 cDNA was used to investigate the mechanisms of lipid efflux to apoA-I or HDL in transfected 293 cells. ABC1 expression markedly increased cellular cholesterol and phospholipid efflux to apoA-I but had only minor effects on lipid efflux to HDL. The increased lipid efflux appears to involve a direct interaction between apoA-I and ABC1, because ABC1 expression substantially increased apoA-I binding at the cell surface, and chemical cross-linking and immunoprecipitation analysis showed that apoA-I binds directly to ABC1. In contrast to scavenger receptor BI (SR-BI), another cell surface molecule capable of facilitating cholesterol efflux, ABC1 preferentially bound lipid-free apoA-I but not HDL. Immunofluorescence confocal microscopy showed that ABC1 is primarily localized on the cell surface. In the absence of apoA-I, cells overexpressing ABC1 displayed a distinctive morphology, characterized by plasma membrane protrusions and resembling echinocytes that form when there are excess lipids in the outer membrane hemileaflet. The studies provide evidence for a direct interaction between ABC1 and apoA-I, but not HDL, indicating that free apoA-I is the metabolic substrate for ABC1. Plasma membrane ABC1 may act as a phospholipid/cholesterol flippase, providing lipid to bound apoA-I, or to the outer membrane hemileaflet.
Type 2 diabetes is characterized by the inability of insulin to suppress glucose production in the liver and kidney. Insulin inhibits glucose production by indirect and direct mechanisms. The latter result in transcriptional suppression of key gluconeogenetic and glycogenolytic enzymes, phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6p). The transcription factors required for this effect are incompletely characterized. We report that in glucogenetic kidney epithelial cells, Pepck and G6p expression are induced by dexamethasone (dex) and cAMP, but fail to be inhibited by insulin. The inability to respond to insulin is associated with reduced expression of the forkhead transcription factor Foxo1, a substrate of the Akt kinase that is inhibited by insulin through phosphorylation. Transduction of kidney cells with recombinant adenovirus encoding Foxo1 results in insulin inhibition of dex/cAMP-induced G6p expression. Moreover, expression of dominant negative Foxo1 mutant results in partial inhibition of dex/cAMP-induced G6p and Pepck expression in primary cultures of mouse hepatocyes and kidney LLC-PK1-FBPase + cells. These findings are consistent with the possibility that Foxo1 is involved in insulin regulation of glucose production by mediating the ability of insulin to decrease the glucocorticoid/cAMP response of G6p.
ABCA1, an ATP-binding cassette transporter mutated in Tangier disease, promotes cellular phospholipid and cholesterol efflux by loading free apoA-I with these lipids. This process involves binding of apoA-I to the cell surface and phospholipid translocation by ABCA1. The goals of this study were to examine the relationship between ABCA1-mediated lipid efflux and apolipoprotein binding and to determine whether phospholipid and cholesterol efflux are coupled. Inhibition of lipid efflux by glybenclamide treatment or by mutation of the ATP-binding cassette of ABCA1 showed a close correlation between lipid efflux, the binding of apoA-I to cells, and cross-linking of apoA-I to ABCA1. The data suggest that a functionally important apoA-I binding site exists on ABCA1 and that the binding site could also involve lipids. After using cyclodextrin preincubation to deplete cellular cholesterol, ABCA1-mediated cholesterol efflux was abolished but phospholipid efflux and the binding of apoA-I were unaffected. The conditioned media from cyclodextrin-pretreated, ABCA1-expressing cells readily promoted cholesterol efflux when added to fresh cells not expressing ABCA1, indicating that cholesterol efflux can be dissociated from phospholipid efflux. Further, using a photoactivatable cholesterol analog, we showed that ABCA1 did not bind cholesterol directly, even though several other cholesterol-binding proteins specifically bound the cholesterol analog. The data suggest that the binding of apoA-I to ABCA1 leads to the formation of phospholipid-apoA-I complexes, which subsequently promote cholesterol efflux in an autocrine or paracrine fashion.
The ability to store fat in the form of cytoplasmic triglyceride droplets is conserved from Saccharomyces cerevisiae to humans. Although much is known regarding the composition and catabolism of lipid droplets, the molecular components necessary for the biogenesis of lipid droplets have remained obscure. Here we report the characterization of a conserved gene family important for lipid droplet formation named fat-inducing transcript (FIT). FIT1 and FIT2 are endoplasmic reticulum resident membrane proteins that induce lipid droplet accumulation in cell culture and when expressed in mouse liver. shRNA silencing of FIT2 in 3T3-LI adipocytes prevents accumulation of lipid droplets, and depletion of FIT2 in zebrafish blocks diet-induced accumulation of lipid droplets in the intestine and liver, highlighting an important role for FIT2 in lipid droplet formation in vivo. Together these studies identify and characterize a conserved gene family that is important in the fundamental process of storing fat.adipocytes ͉ diabetes ͉ FIT ͉ obesity ͉ triglyceride T he ability to store energy in the form of triglyceride (TG) is conserved from Saccharomyces cerevisiae to humans. TGs are stored in the cytoplasm surrounded by a monolayer of phospholipid in distinct structures or organelles given numerous names, such as lipid particles, oil bodies, adiposomes, eicosasomes, and, more commonly, lipid droplets (1). Under normal physiological conditions, lipid droplets are involved in maintaining energy balance at the cellular and whole-organism levels. Yet under conditions of extreme lipid droplet acquisition, as in obesity, the risk for acquiring common debilitating diseases such as type 2 diabetes and cardiovascular diseases is increased (2).Despite their central role in energy homeostasis, only recently have the composition and functions of many of the components of lipid droplets from S. cerevisiae, Drosophila, and mammalian cells been revealed. In general, lipid droplets are composed of a core of neutral lipids, primarily TGs, surrounded by a monolayer of phospholipids and lipid droplet-associated proteins (3-7). In mammalian cells, the catabolism of lipid droplets is a highly regulated process involving hormonal signals, droplet-associated proteins, and lipases (8-10). Although much has been learned about the components and catabolism of lipid droplets, the molecular mechanism of lipid droplet biogenesis has remained unknown. The prevailing view is that lipid droplets are formed at the endoplasmic reticulum (ER) because the ER is the site of TG biosynthesis, and lipid droplets are often observed in close association with the cytoplasmic face of the ER (11-13). A widely accepted model of lipid droplet biogenesis involves the formation of a core or lens of newly synthesized TG between the leaflets of the ER membrane that buds off with the cytoplasmic leaflet of the ER surrounding the neutral lipid core and acquires exchangeable cytosolic lipid droplet-associated proteins (14). However, this view was recently challenged by observatio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.