Opioid receptor selective antagonists are important pharmacological probes in opioid receptor structural characterization and opioid agonist functional study. Thus far, a nonpeptidyl, highly selective and reversible μ opioid receptor (MOR) antagonist is unavailable. On the basis of our modeling studies, a series of novel naltrexamine derivatives have been designed and synthesized. Among them, two compounds were identified as leads based on the results of in vitro and in vivo assays. Both of them displayed high binding affinity for the MOR (K i = 0.37 and 0.55 nM). Compound 6 (NAP) showed over 700-fold selectivity for the MOR over the δ receptor (DOR) and more than 150-fold selectivity over the κ receptor (KOR). Compound 9 (NAQ) showed over 200-fold selectivity for the MOR over the DOR and approximately 50-fold selectivity over the KOR. Thus these two novel ligands will serve as leads to further develop more potent and selective antagonists for the MOR.
Radiation-induced degradation of protein or DNA samples by synchrotron radiation is an inherent problem in X-ray crystallography, especially at the 'brighter' light sources. This short review gives a radiation chemical perspective on some of the physical and chemical processes that need to be considered in understanding potential pathways leading to the gradual degradation of the samples. Under the conditions used for X-ray crystallography at a temperature of <100 K in the presence of cryoprotectant agents, the majority of radiation damage of the protein samples arises from direct ionization of the amino acid residues and their associated water molecules. Some of the chemical processes that may occur at these protein centres, such as bond scission, are discussed. Several approaches are discussed that may reduce radiation damage, using agents known from radiation chemistry to minimize radical-induced degradation of the sample.
We have demonstrated chromosomal instability in the clonal descendants of hemopoietic stem cells after irradiating murine bone marrow with ␣-particles. However, because cells that are irradiated by ␣-particles are defined by a Poisson distribution of individual particle traversals, there is an inevitable proportion of unirradiated cells in the surviving population. The calculated expected proportions of irradiated and nonirradiated cells indicate that the number of clonogenic cells transmitting chromosomal instability is greater than the number expected to be hit and survive. To investigate further this discrepancy, we studied the effects of interposing a grid between the cells and the ␣-particle source so that the surviving population consists predominantly of untraversed stem cells. Comparison with the same irradiation conditions without the grid reveals that the same level of instability is induced. The data confirm that ␣-particles induce chromosomal instability but instability is demonstrated in the progeny of nonirradiated stem cells and must be due to unexpected interactions between irradiated and nonirradiated cells. This untargeted effect has important implications for mechanistic studies of radiation action and for assessment of radiation risk.
Structure-activity relationship (SAR) studies of numerous opioid ligands have shown that introduction of a methyl or ethyl group on the tertiary amino group at position 17 of the epoxymorphinan skeleton generally results in a mu opioid receptor (MOR) agonist while introduction of a cyclopropylmethyl group typically leads to an antagonist. Furthermore, it has been shown that introduction of heterocyclic ring systems at position 6 can favor antagonism. However, it was reported that 17-cyclopropylmethyl-3,14β-dihydroxy-4,5α-epoxy-6β-[(2'-indolyl)acetamido]morphinan (INTA), which bears a cyclopropylmethyl group at position 17 and an indole ring at position 6, acted as a MOR agonist. We herein report a SAR study on INTA with a series of its complementary derivatives to understand how introduction of an indole moiety with α or β linkage at position 6 of the epoxymorphinan skeleton may influence ligand function. Interestingly, one of INTA derivatives, compound 15 (NAN) was identified as a MOR antagonist both in vitro and in vivo. Molecular modeling studies revealed that INTA and NAN may interact with different domains of the MOR allosteric binding site. In addition, INTA may interact with W293 and N150 residues found in the orthosteric site to stabilize MOR activation conformation while NAN does not. These results suggest that INTA and NAN may be bitopic ligands and the type of allosteric interactions with the MOR influence their functional activity. These insights along with our enriched comprehension of the "message-address" concept will to benefit future ligand design.
The induction and rejoining of DNA double-strand breaks (dsbs) in V79-4 mammalian cells following irradiation by 60Co gamma-rays and 238Pu alpha-particles (average LET 120 keV microns-1) under aerobic conditions have been determined using both the sucrose sedimentation and filter elution techniques under non-denaturing conditions. Cellular inactivation was also determined. The dependence of the initial yield of dsbs at 277 K on dose under aerobic conditions is linear with a relative biological effectiveness (RBE) for alpha-particles of 0.85 +/- 0.14 (sedimentation) and 0.68 +/- 0.12 (elution) compared with 60Co gamma-rays. The ability of the cells to rejoin dsbs at 310K is significantly reduced for alpha-irradiations with only 30-50% rejoined for a 3-h incubation period. With low LET radiation, > 90% of the dsbs are rejoined within 3 h at a dose of 20 Gy. The RBE for cellular inactivation was determined to be 4.0 at the 1% survival level. From the cellular dimensions and the D0-value for cellular inactivation by alpha-particles, it is determined that, on average, 4.7 tracks traverse the cell nucleus per lethal lesion. Under hypoxic conditions, the RBE values for induction of dsbs and cellular inactivation (10% level) by alpha-particles are approximately 3.0 and approximately 11.8 respectively. From these findings, it is suggested that the residual DNA damage and not the initial damage is reflected in the cellular inactivation. It is inferred that the difference in repair of the various lesions is a reflection of the differences in the complexity of the clustered damage produced by these radiations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.