The asymmetric quantum Rabi model (AQRM), which describes the interaction between a quantum harmonic oscillator and a biased qubit, arises naturally in circuit quantum electrodynamic circuits and devices. The existence of hidden symmetry in the AQRM leads to a rich energy landscape of conical intersections (CIs) and thus to interesting topological properties. However, current approximations to the AQRM fail to reproduce these CIs correctly. To overcome these limitations we propose a generalized adiabatic approximation (GAA) to describe the energy spectrum of the AQRM. This is achieved by combining the perturbative adiabatic approximation and the exact exceptional solutions to the AQRM. The GAA provides substantial improvement to the existing approaches and pushes the limit of the perturbative treatment into non-perturbative regimes. As a preliminary example of the application of the GAA we calculate the geometric phases around CIs associated with the AQRM.
In this paper, an alternative approach for constructing Lagrangians for driven and undriven linearly damped systems is proposed, by introducing a redefined time coordinate and an associated coordinate transformation to ensure that the resulting Lagrangian satisfies the Helmholtz conditions. The approach is applied to canonically quantize the damped harmonic oscillator and although it predicts an energy spectrum that decays at the same rate to previous models, unlike those approaches it recovers the classical critical damping condition, which determines transitions between energy eigenstates, and is therefore consistent with the correspondence principle. It is also demonstrated how to apply the procedure to a driven damped harmonic oscillator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.