The development of pulmonary atelectasis is common in the surgical patient. Pulmonary atelectasis can cause various degrees of gas exchange and respiratory mechanics impairment during and after surgery. In its most serious presentations, lung collapse could contribute to postoperative respiratory insufficiency, pneumonia, and worse overall clinical outcomes. A specific risk assessment is critical to allow clinicians to optimally choose the anesthetic technique, prepare appropriate monitoring, adapt the perioperative plan, and ensure the patient’s safety. Bedside diagnosis and management have benefited from recent imaging advancements such as lung ultrasound and electrical impedance tomography, and monitoring such as esophageal manometry. Therapeutic management includes a broad range of interventions aimed at promoting lung recruitment. During general anesthesia, these strategies have consistently demonstrated their effectiveness in improving intraoperative oxygenation and respiratory compliance. Yet these same intraoperative strategies may fail to affect additional postoperative pulmonary outcomes. Specific attention to the postoperative period may be key for such outcome impact of lung expansion. Interventions such as noninvasive positive pressure ventilatory support may be beneficial in specific patients at high risk for pulmonary atelectasis (e.g., obese) or those with clinical presentations consistent with lung collapse (e.g., postoperative hypoxemia after abdominal and cardiothoracic surgeries). Preoperative interventions may open new opportunities to minimize perioperative lung collapse and prevent pulmonary complications. Knowledge of pathophysiologic mechanisms of atelectasis and their consequences in the healthy and diseased lung should provide the basis for current practice and help to stratify and match the intensity of selected interventions to clinical conditions.
Strategies to split ventilators to support multiple patients requiring ventilatory support have been proposed and used in emergency cases in which shortages of ventilators cannot otherwise be remedied by production or procurement strategies. However, the current approaches to ventilator sharing lack the ability to individualize ventilation to each patient, measure pulmonary mechanics, and accommodate rebalancing of the airflow when one patient improves or deteriorates, posing safety concerns to patients. Potential cross-contamination, lack of alarms, insufficient monitoring, and inability to adapt to sudden changes in patient status have prevented widespread acceptance of ventilator sharing. We have developed an individualized system for augmenting ventilator efficacy (iSAVE) as a rapidly deployable platform that uses a single ventilator to simultaneously and more safely support two individuals. The iSAVE enables individual-specific volume and pressure control and the rebalancing of ventilation in response to improvement or deterioration in an individual’s respiratory status. The iSAVE incorporates mechanisms to measure pulmonary mechanics, mitigate cross-contamination and backflow, and accommodate sudden flow changes due to individual interdependencies within the respiratory circuit. We demonstrate these capacities through validation using closed- and open-circuit ventilators on linear test lungs. We show that the iSAVE can temporarily ventilate two pigs on one ventilator as efficaciously as each pig on its own ventilator. By leveraging off-the-shelf medical components, the iSAVE could rapidly expand the ventilation capacity of health care facilities during emergency situations such as pandemics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.