Catecholamines are known to provoke cardiac arrhythmias, but important aspects such as localization of the arrhythmia source in multicellular tissue and exact ionic mechanisms are not well-known. In this work, a multicellular model of arrhythmias caused by local epinephrine application was developed; V (m) and Ca(i)(2+) changes at the arrhythmia source were measured using fluorescent dyes and high-resolution optical mapping. Cultured strands of neonatal rat myocytes (width approximately 0.4 mm) were produced by patterned growth. Epinephrine (1 micromol/l) was applied over an area of 0.3-0.6 mm via two micropipettes, and strands were stimulated by burst pacing. Local epinephrine application caused triggered arrhythmias with cycle lengths of 202-379 ms and duration of >10 s in 9 out of 16 preparations. Optical V(m) mapping demonstrated that in 78% of cases, the source of arrhythmia was located at the boundary of the locally perfused area. Staining with Ca(i)(2+)-sensitive dye Fluo-4 prevented arrhythmia induction in most cases (85%) likely due to Ca(2+) buffering by the dye. Optical Ca(i)(2+) mapping revealed non-propagated Ca(i)(2+) oscillations at the boundary of the locally perfused area in 45% cases. In conclusion, we developed a new model of catecholamine-dependent arrhythmias allowing mapping of V(m) and Ca(i)(2+) at the arrhythmia source with microscopic resolution. The arrhythmias typically originated from the boundary of the epinephrine-perfused area. The location of the arrhythmia source correlated with localized Ca(i)(2+) oscillations suggesting that arrhythmias were caused by Ca(i)(2+) overload at these locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.