In this paper, we compute the Laplace transform of occupation times (of the negative half-line) of spectrally negative Lévy processes. Our results are extensions of known results for standard Brownian motion and jump-diffusion processes. The results are expressed in terms of the so-called scale functions of the spectrally negative Lévy process and its Laplace exponent. Applications to insurance risk models are also presented.
This paper considers magnitude, asymptotics and duration of drawdowns for some Lévy processes. First, we revisit some existing results on the magnitude of drawdowns for spectrally negative Lévy processes using an approximation approach. For any spectrally negative Lévy process whose scale functions are well-behaved at 0+, we then study the asymptotics of drawdown quantities when the threshold of drawdown magnitude approaches zero. We also show that such asymptotics is robust to perturbations of additional positive compound Poisson jumps. Finally, thanks to the asymptotic results and some recent works on the running maximum of Lévy processes, we derive the law of duration of drawdowns for a large class of Lévy processes (with a general spectrally negative part plus a positive compound Poisson structure). The duration of drawdowns is also known as the "Time to Recover" (TTR) the historical maximum, which is a widely used performance measure in the fund management industry. We find that the law of duration of drawdowns qualitatively depends on the path type of the spectrally negative component of the underlying Lévy process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.