International audienceHerein, we report on a three-component supra molecular hybrid system built from specific recognition processes involving a Dawson-type polyoxometalate (POM) ,P2W18O62](6-), a cationic electron-rich cluster [Ta6Br12(H2O)(6)](2+), and gamma-cyclodextrin (gamma-CD). Such materials have been investigated using a bottom-up approach by studying the specific interactions between gamma-CD and both types of inorganic units. Their ability to interact has been investigated in the solid state by single-crystal X-ray diffraction (XRD) and in solution using multinuclear NMR methods (including DOSY, EXSY, and COSY), electrospray ionization mass and UV-vis spectroscopies, electrochemistry, and isothermal titration calorimetry experiments. Single-crystal XRD analysis reveals that POM:gamma-CD constitutes a highly versatile system which gives aggregates with 1:1, 1:2, and 1:3 stoichiometry. Surprisingly, these arrangements exhibit a common feature wherein the gamma-CD moiety interacts with the Dawson-type POMs through its primary face. We present also the first structural model involving an octahedral-type metallic cluster with gamma-CD. XRD study reveals that the cationic [Ta6Br12(H2O)(6)](2+) ion is closely embedded within two gamma-CD units to give a supramolecular ditopic cation, suitable to be used as a linker within extended structure. Solution study demonstrates clearly that pre-associations exist in solution, for which binding constants and thermodynamic parameters have been determined, giving preliminary arguments about the chaotropic nature of the inorganic ions. Finally, both building blocks, i.e., the ditopic supramolecular cation {[Ta6Br12(H2O)(6)]@2CD}(2+) and the Dawson-type anion, react together to give a three-component, well-ordered hybrid material derived either as a supramolecular hydrogel or single crystals. The solid-state structure shows an unprecedented helicoidal tubular chain resulting from the periodic alternation of POM and supramolecular cation, featuring short hydrogen-bonding contacts between the electron-poor POM and electron-rich cluster. The 1D tubular ionic polymer observed in the single crystals should make it possible to understand the long-range ordering observed within the hydrogel hybrid material. The supramolecular chemical complementarities between the gamma-CD-based ditopic cation and POM open a wide scope for the design of hybrid materials that accumulate synergistic functionalities
The chaotropic character of Keggin-type polyoxotungstate anions was evaluated with respect to their ability to bind to γ-cyclodextrin (γ-CD) by varying the global charge density of the nanometer-sized polyanion. The...
Water-soluble salts of anionic [Re Q (CN) ] (Q=S, Se, Te) chalcogenide octahedral rhenium clusters react with γ-cyclodextrin (γ-CD) producing a new type of inclusion compounds. Crystal structures determined through single-crystal X-ray diffraction analysis revealed supramolecular host-guest assemblies resulting from close encapsulations of the octahedral cluster within two γ-CDs. Interestingly, nature of the inner Q ligands influences strongly the host-guest conformation. The cluster [Re S (CN) ] interacts preferentially with the primary faces of the γ-CD while the bulkier clusters [Re Se (CN) ] and [Re Te (CN) ] exhibit specific interactions with the secondary faces of the cyclic host. Furthermore, analysis of the crystal packing reveals additional supramolecular interactions that lead to 2D infinite arrangements with [Re S (CN) ] or to 1D "bamboo-like" columns with [Re Se (CN) ] and [Re Te (CN) ] species. Solution studies, using multinuclear NMR methods, ESI-MS and Isothermal titration calorimetry (ITC) corroborates nicely the solid-state investigations showing that supramolecular pre-organization is retained in aqueous solution even in diluted conditions. Furthermore, ITC analysis showed that host-guest stability increases significantly ongoing from S to Te. At last, we report herein that deep inclusion alters significantly the intrinsic physical-chemical properties of the octahedral clusters, allowing redox tuning and near IR luminescence enhancement.
Cyclodextrins (CDs) are a family of cyclic oligosaccharides that constitute one of the most widely used molecular hosts in supramolecular chemistry. Encapsulation in the hydrophobic cavity of CDs positively affects the physical and chemical characteristics of the guests upon the formation of inclusion complexes. Such a property is interestingly employed to retain volatile guests and reduce their volatility. Within this scope, the starting crucial point for a suitable and careful characterization of an inclusion complex is to assess the value of the formation constant (Kf), also called stability or binding constant. This task requires the application of the appropriate analytical method and technique. Thus, the aim of the present paper is to give a general overview of the main analytical tools used for the determination of Kf values for CD/volatile inclusion complexes. This review emphasizes on the advantages, inconvenients and limits of each applied method. A special attention is also dedicated to the improvement of the current methods and to the development of new techniques. Further, the applicability of each technique is illustrated by a summary of data obtained from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.