Mercury thioarsenate glasses (HgS)x(As2S3)1−x, 0.0 ≤x≤ 0.5, form a hybrid (HgS2/2)nchain/AsS3/2pyramidal network, highly unusual for metal chalcogenide glasses. This network is evidenced by Raman spectroscopy and DFT modelling and consistent with thermal properties. Nevertheless we cannot exclude completely the presence of a small fraction of HgS4/4tetrahedral units.
Biochemical changes in living cells are detected using a fiber probe system composed of a single chalcogenide fiber acting as both the sensor and transmission line for infrared optical signals. The signal is collected via evanescent wave absorption along the tapered sensing zone of the fiber. We spectroscopically monitored the effects of the surfactant Triton X-lOO, which serves as a toxic agent simulant on a transformed human lung carcinoma type II epithelial cell line (A549). We observe spectral changes between 2800-3000 cm-1 in four absorptions bands, which are assigned to hydrocarbon vibrations of methylene and methyl groups in membrane lipids. Comparison of fiber and transmission spectra shows that the present technique allows one to locally probe the cell plasma membrane in the lipid spectral region. These optical responses are correlated with cellular metabolic activity measurements and LDH (lactate dehydrogenase) release assays that indicate a loss of cellular function and membrane integrity as would be expected in response to the membrane solubilizing Triton. The spectroscopic technique shows a significantly greater detection resolution in time and concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.